File size: 15,736 Bytes
eac3f1d 7a60a8c eac3f1d b0c3040 7a60a8c eac3f1d 7a60a8c b0c3040 7a60a8c b0c3040 7a60a8c b0c3040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import argparse
import json
import os
import shutil
import re
from collections import defaultdict
from inspect import signature
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple
import torch
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import load_file, save_file
from transformers import AutoConfig
COMMIT_DESCRIPTION = """
This is an automated PR created with https://huggingface.co/spaces/safetensors/convert
This new file is equivalent to `pytorch_model.bin` but safe in the sense that
no arbitrary code can be put into it.
These files also happen to load much faster than their pytorch counterpart:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb
The widgets on your model page will run using this model even if this is not merged
making sure the file actually works.
If you find any issues: please report here: https://huggingface.co/spaces/safetensors/convert/discussions
Feel free to ignore this PR.
"""
ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]
class AlreadyExists(Exception):
pass
def shared_pointers(tensors):
ptrs = defaultdict(list)
for k, v in tensors.items():
ptrs[v.data_ptr()].append(k)
failing = []
for ptr, names in ptrs.items():
if len(names) > 1:
failing.append(names)
return failing
def check_file_size(sf_filename: str, pt_filename: str):
sf_size = os.stat(sf_filename).st_size
pt_size = os.stat(pt_filename).st_size
if (sf_size - pt_size) / pt_size > 0.01:
raise RuntimeError(
f"""The file size different is more than 1%:
- {sf_filename}: {sf_size}
- {pt_filename}: {pt_size}
"""
)
def rename(pt_filename: str) -> str:
filename, ext = os.path.splitext(pt_filename)
local = f"{filename}.safetensors"
local = local.replace("pytorch_model", "model")
return local
def convert_multi(model_id: str, folder: str, token: Optional[str]) -> ConversionResult:
filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder)
with open(filename, "r") as f:
data = json.load(f)
filenames = set(data["weight_map"].values())
local_filenames = []
for filename in filenames:
pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)
sf_filename = rename(pt_filename)
sf_filename = os.path.join(folder, sf_filename)
convert_file(pt_filename, sf_filename)
local_filenames.append(sf_filename)
index = os.path.join(folder, "model.safetensors.index.json")
with open(index, "w") as f:
newdata = {k: v for k, v in data.items()}
newmap = {k: rename(v) for k, v in data["weight_map"].items()}
newdata["weight_map"] = newmap
json.dump(newdata, f, indent=4)
local_filenames.append(index)
operations = [
CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
]
errors: List[Tuple[str, "Exception"]] = []
return operations, errors
def convert_single(model_id: str, folder: str, token: Optional[str]) -> ConversionResult:
pt_filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin", token=token, cache_dir=folder)
sf_name = "model.safetensors"
sf_filename = os.path.join(folder, sf_name)
convert_file(pt_filename, sf_filename)
operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
errors: List[Tuple[str, "Exception"]] = []
return operations, errors
def convert_file(
pt_filename: str,
sf_filename: str,
):
loaded = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
shared = shared_pointers(loaded)
for shared_weights in shared:
for name in shared_weights[1:]:
loaded.pop(name)
# For tensors to be contiguous
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_filename)
#os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
check_file_size(sf_filename, pt_filename)
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str:
errors = []
for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]:
pt_set = set(pt_infos[key])
sf_set = set(sf_infos[key])
pt_only = pt_set - sf_set
sf_only = sf_set - pt_set
if pt_only:
errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings")
if sf_only:
errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings")
return "\n".join(errors)
def check_final_model(model_id: str, folder: str, token: Optional[str]):
config = hf_hub_download(repo_id=model_id, filename="config.json", token=token, cache_dir=folder)
shutil.copy(config, os.path.join(folder, "config.json"))
config = AutoConfig.from_pretrained(folder)
import transformers
class_ = getattr(transformers, config.architectures[0])
(pt_model, pt_infos) = class_.from_pretrained(folder, output_loading_info=True)
(sf_model, sf_infos) = class_.from_pretrained(folder, output_loading_info=True)
if pt_infos != sf_infos:
error_string = create_diff(pt_infos, sf_infos)
raise ValueError(f"Different infos when reloading the model: {error_string}")
pt_params = pt_model.state_dict()
sf_params = sf_model.state_dict()
pt_shared = shared_pointers(pt_params)
sf_shared = shared_pointers(sf_params)
if pt_shared != sf_shared:
raise RuntimeError("The reconstructed model is wrong, shared tensors are different {shared_pt} != {shared_tf}")
sig = signature(pt_model.forward)
input_ids = torch.arange(10).unsqueeze(0)
pixel_values = torch.randn(1, 3, 224, 224)
input_values = torch.arange(1000).float().unsqueeze(0)
# Hardcoded for whisper basically
input_features = torch.zeros((1, 80, 3000))
kwargs = {}
if "input_ids" in sig.parameters:
kwargs["input_ids"] = input_ids
if "input_features" in sig.parameters:
kwargs["input_features"] = input_features
if "decoder_input_ids" in sig.parameters:
kwargs["decoder_input_ids"] = input_ids
if "pixel_values" in sig.parameters:
kwargs["pixel_values"] = pixel_values
if "input_values" in sig.parameters:
kwargs["input_values"] = input_values
if "bbox" in sig.parameters:
kwargs["bbox"] = torch.zeros((1, 10, 4)).long()
if "image" in sig.parameters:
kwargs["image"] = pixel_values
if torch.cuda.is_available():
pt_model = pt_model.cuda()
sf_model = sf_model.cuda()
kwargs = {k: v.cuda() for k, v in kwargs.items()}
try:
pt_logits = pt_model(**kwargs)[0]
except Exception as e:
try:
# Musicgen special exception.
decoder_input_ids = torch.ones((input_ids.shape[0] * pt_model.decoder.num_codebooks, 1), dtype=torch.long)
if torch.cuda.is_available():
decoder_input_ids = decoder_input_ids.cuda()
kwargs["decoder_input_ids"] = decoder_input_ids
pt_logits = pt_model(**kwargs)[0]
except Exception:
raise e
sf_logits = sf_model(**kwargs)[0]
torch.testing.assert_close(sf_logits, pt_logits)
print(f"Model {model_id} is ok !")
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
main_commit = api.list_repo_commits(model_id)[0].commit_id
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
commits = api.list_repo_commits(model_id, revision=discussion.git_reference)
if main_commit == commits[1].commit_id:
return discussion
return None
def convert_generic(model_id: str, folder: str, filenames: Set[str], token: Optional[str]) -> ConversionResult:
operations = []
errors = []
extensions = set([".bin", ".ckpt"])
for filename in filenames:
prefix, ext = os.path.splitext(filename)
if ext in extensions:
pt_filename = hf_hub_download(model_id, filename=filename, token=token, cache_dir=folder)
dirname, raw_filename = os.path.split(filename)
if raw_filename == "pytorch_model.bin":
# XXX: This is a special case to handle `transformers` and the
# `transformers` part of the model which is actually loaded by `transformers`.
sf_in_repo = os.path.join(dirname, "model.safetensors")
else:
sf_in_repo = f"{prefix}.safetensors"
sf_filename = os.path.join(folder, sf_in_repo)
try:
convert_file(pt_filename, sf_filename)
operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
except Exception as e:
errors.append((pt_filename, e))
return operations, errors
def convert(api: "HfApi", model_id: str, force: bool = False) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
pr_title = "Adding `safetensors` variant of this model"
info = api.model_info(model_id)
filenames = set(s.rfilename for s in info.siblings)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
operations = None
pr = previous_pr(api, model_id, pr_title)
library_name = getattr(info, "library_name", None)
if any(filename.endswith(".safetensors") for filename in filenames) and not force:
raise AlreadyExists(f"Model {model_id} is already converted, skipping..")
elif pr is not None and not force:
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
new_pr = pr
raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
elif library_name == "transformers":
if "pytorch_model.bin" in filenames:
operations, errors = convert_single(model_id, folder, token=api.token)
elif "pytorch_model.bin.index.json" in filenames:
operations, errors = convert_multi(model_id, folder, token=api.token)
else:
raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
# check_final_model(model_id, folder, token=api.token)
else:
operations, errors = convert_generic(model_id, folder, filenames, token=api.token)
if operations:
new_pr = api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=pr_title,
commit_description=COMMIT_DESCRIPTION,
create_pr=True,
)
print(f"Pr created at {new_pr.pr_url}")
else:
print("No files to convert")
finally:
shutil.rmtree(folder)
return new_pr, errors
def main(input_directory, output_directory, delete_files, delete_input_directory):
# Get a list of all files in the input directory
files = os.listdir(input_directory)
# Filter the list to get only the relevant files
model_files = [file for file in files if re.match(r'pytorch_model-\d{5}-of-\d{5}\.bin', file)]
# Determine the range for the loop based on the number of model files
num_models = len(model_files)
if num_models == 0:
print("No model files found in the input directory.")
return
# Extract yyyyy from the first model filename
match = re.search(r'pytorch_model-\d{5}-of-(\d{5})\.bin', model_files[0])
if match:
yyyyy = int(match.group(1))
else:
print("Unable to determine the number of shards from the filename.")
return
if num_models != yyyyy:
print("Error: Number of shards mismatch.")
return
# Copy *.json files (except pytorch_model.bin.index.json) from input to output directory
for file in files:
if file.endswith('.json') and not file == 'pytorch_model.bin.index.json':
src = os.path.join(input_directory, file)
dest = os.path.join(output_directory, file)
shutil.copy2(src, dest)
print(f"Copied {src} to {dest}")
# Copy *.model files from input to output directory
for file in files:
if file.endswith('.model'):
src = os.path.join(input_directory, file)
dest = os.path.join(output_directory, file)
shutil.copy2(src, dest)
print(f"Copied {src} to {dest}")
# Convert and rename model files
for i in range(1, num_models + 1):
input_filename = os.path.join(input_directory, f"pytorch_model-{i:05d}-of-{yyyyy:05d}.bin")
output_filename = os.path.join(output_directory, f"model-{i:05d}-of-{yyyyy:05d}.safetensors")
convert_file(input_filename, output_filename)
print(f"Converted {input_filename} to {output_filename}")
# Delete the pytorch_model file if the delete_files flag or delete_input_directory flag are set
if delete_files or delete_input_directory:
os.remove(input_filename)
print(f"Deleted {input_filename}")
# Check if there are any remaining pytorch_model files in the input directory
remaining_model_files = [file for file in os.listdir(input_directory) if re.match(r'pytorch_model-\d{5}-of-\d{5}\.bin', file)]
if len(remaining_model_files) == 0:
# Delete the input directory if all files have been converted successfully
if delete_input_directory:
shutil.rmtree(input_directory)
print(f"Deleted input directory {input_directory}")
else:
print("Warning: Input directory still contains pytorch_model files and won't be deleted.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert pytorch_model model to safetensor and copy JSON and .model files.")
parser.add_argument("input_directory", help="Path to the input directory containing pytorch_model files")
parser.add_argument("output_directory", help="Path to the output directory for converted safetensor files")
parser.add_argument("-d", "--delete", action="store_true", help="Delete pytorch_model files after conversion")
parser.add_argument("-D", "--delete-input", action="store_true", help="Delete pytorch_model files after conversion as well as the input directory after all files are converted")
args = parser.parse_args()
main(args.input_directory, args.output_directory, args.delete, args.delete_input)
|