|
import base64 |
|
import gzip |
|
from dataclasses import dataclass |
|
from typing import Dict, Iterable, Optional, List |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor, nn |
|
from subprocess import CalledProcessError, run, Popen, PIPE |
|
|
|
import os |
|
from functools import lru_cache |
|
from typing import Optional, Union |
|
|
|
def exact_div(x, y): |
|
assert x % y == 0 |
|
return x // y |
|
|
|
|
|
SAMPLE_RATE = 16000 |
|
N_FFT = 400 |
|
N_MELS = 80 |
|
HOP_LENGTH = 160 |
|
CHUNK_LENGTH = 30 |
|
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE |
|
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) |
|
|
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 |
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) |
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) |
|
|
|
|
|
|
|
def get_T_after_cnn(L_in, dilation=1): |
|
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "): |
|
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1 |
|
L_out = 1 + L_out // stride |
|
L_in = L_out |
|
return L_out |
|
|
|
def load_bytesio_audio(content, sr: int = SAMPLE_RATE): |
|
cmd = [ |
|
"ffmpeg", |
|
"-nostdin", |
|
"-threads", "0", |
|
"-i", "pipe:", |
|
"-f", "s16le", |
|
"-ac", "1", |
|
"-acodec", "pcm_s16le", |
|
"-ar", str(sr), |
|
"pipe:" |
|
] |
|
p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1) |
|
out, _ = p.communicate(input=content) |
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |
|
|
|
def load_audio(file: str, sr: int = SAMPLE_RATE): |
|
""" |
|
Open an audio file and read as mono waveform, resampling as necessary |
|
Parameters |
|
---------- |
|
file: str |
|
The audio file to open |
|
sr: int |
|
The sample rate to resample the audio if necessary |
|
Returns |
|
------- |
|
A NumPy array containing the audio waveform, in float32 dtype. |
|
""" |
|
|
|
|
|
|
|
|
|
cmd = [ |
|
"ffmpeg", |
|
"-nostdin", |
|
"-threads", "0", |
|
"-i", file, |
|
"-f", "s16le", |
|
"-ac", "1", |
|
"-acodec", "pcm_s16le", |
|
"-ar", str(sr), |
|
"-" |
|
] |
|
|
|
try: |
|
out = run(cmd, capture_output=True, check=True).stdout |
|
except CalledProcessError as e: |
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e |
|
|
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |
|
|
|
|
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): |
|
""" |
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder. |
|
""" |
|
if torch.is_tensor(array): |
|
if array.shape[axis] > length: |
|
array = array.index_select( |
|
dim=axis, index=torch.arange(length, device=array.device) |
|
) |
|
|
|
if array.shape[axis] < length: |
|
pad_widths = [(0, 0)] * array.ndim |
|
pad_widths[axis] = (0, length - array.shape[axis]) |
|
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) |
|
else: |
|
if array.shape[axis] > length: |
|
array = array.take(indices=range(length), axis=axis) |
|
|
|
if array.shape[axis] < length: |
|
pad_widths = [(0, 0)] * array.ndim |
|
pad_widths[axis] = (0, length - array.shape[axis]) |
|
array = np.pad(array, pad_widths) |
|
|
|
return array |
|
|
|
def trim(array, length: int = N_SAMPLES, *, axis: int = -1): |
|
""" |
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder. |
|
""" |
|
if torch.is_tensor(array): |
|
if array.shape[axis] > length: |
|
array = array.index_select( |
|
dim=axis, index=torch.arange(length, device=array.device) |
|
) |
|
else: |
|
if array.shape[axis] > length: |
|
array = array.take(indices=range(length), axis=axis) |
|
return array |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: |
|
""" |
|
load the mel filterbank matrix for projecting STFT into a Mel spectrogram. |
|
Allows decoupling librosa dependency; saved using: |
|
np.savez_compressed( |
|
"mel_filters.npz", |
|
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), |
|
) |
|
""" |
|
assert n_mels == 80, f"Unsupported n_mels: {n_mels}" |
|
with np.load( |
|
os.path.join(os.path.dirname(__file__), "mel_filters.npz") |
|
|
|
) as f: |
|
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) |
|
|
|
|
|
def log_mel_spectrogram( |
|
audio: Union[str, np.ndarray, torch.Tensor], |
|
n_mels: int = N_MELS, |
|
padding: int = 0, |
|
device: Optional[Union[str, torch.device]] = None, |
|
): |
|
""" |
|
Compute the log-Mel spectrogram of |
|
Parameters |
|
---------- |
|
audio: Union[str, np.ndarray, torch.Tensor], shape = (*) |
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz |
|
n_mels: int |
|
The number of Mel-frequency filters, only 80 is supported |
|
padding: int |
|
Number of zero samples to pad to the right |
|
device: Optional[Union[str, torch.device]] |
|
If given, the audio tensor is moved to this device before STFT |
|
Returns |
|
------- |
|
torch.Tensor, shape = (80, n_frames) |
|
A Tensor that contains the Mel spectrogram |
|
""" |
|
if not torch.is_tensor(audio): |
|
if isinstance(audio, str): |
|
audio = load_audio(audio) |
|
audio = torch.from_numpy(audio) |
|
|
|
if device is not None: |
|
audio = audio.to(device) |
|
if padding > 0: |
|
audio = F.pad(audio, (0, padding)) |
|
window = torch.hann_window(N_FFT).to(audio.device) |
|
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
|
|
filters = mel_filters(audio.device, n_mels) |
|
mel_spec = filters @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
return log_spec |
|
|
|
|
|
@dataclass |
|
class ModelDimensions: |
|
n_mels: int |
|
n_audio_ctx: int |
|
n_audio_state: int |
|
n_audio_head: int |
|
n_audio_layer: int |
|
n_vocab: int |
|
n_text_ctx: int |
|
n_text_state: int |
|
n_text_head: int |
|
n_text_layer: int |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
return super().forward(x).type(x.dtype) |
|
|
|
|
|
|
|
|
|
class Linear(nn.Linear): |
|
def forward(self, x: Tensor) -> Tensor: |
|
return F.linear( |
|
x, |
|
self.weight.to(x.dtype), |
|
None if self.bias is None else self.bias.to(x.dtype), |
|
) |
|
|
|
|
|
class Conv1d(nn.Conv1d): |
|
def _conv_forward( |
|
self, x: Tensor, weight: Tensor, bias: Optional[Tensor] |
|
) -> Tensor: |
|
return super()._conv_forward( |
|
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) |
|
) |
|
|
|
|
|
def sinusoids(length, channels, max_timescale=10000): |
|
"""Returns sinusoids for positional embedding""" |
|
assert channels % 2 == 0 |
|
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) |
|
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] |
|
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, n_state: int, n_head: int): |
|
super().__init__() |
|
self.n_head = n_head |
|
self.query = Linear(n_state, n_state) |
|
self.key = Linear(n_state, n_state, bias=False) |
|
self.value = Linear(n_state, n_state) |
|
self.out = Linear(n_state, n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
xa: Optional[Tensor] = None, |
|
mask: Optional[Tensor] = None, |
|
kv_cache: Optional[dict] = None, |
|
): |
|
q = self.query(x) |
|
|
|
if kv_cache is None or xa is None or self.key not in kv_cache: |
|
|
|
|
|
k = self.key(x if xa is None else xa) |
|
v = self.value(x if xa is None else xa) |
|
else: |
|
|
|
k = kv_cache[self.key] |
|
v = kv_cache[self.value] |
|
|
|
wv, qk = self.qkv_attention(q, k, v, mask) |
|
return self.out(wv), qk |
|
|
|
def qkv_attention( |
|
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None |
|
): |
|
n_batch, n_ctx, n_state = q.shape |
|
scale = (n_state // self.n_head) ** -0.25 |
|
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale |
|
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale |
|
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) |
|
|
|
qk = q @ k |
|
if mask is not None: |
|
qk += mask |
|
|
|
w = F.softmax(qk, dim=-1).to(q.dtype) |
|
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): |
|
super().__init__() |
|
|
|
self.attn = MultiHeadAttention(n_state, n_head) |
|
self.attn_ln = LayerNorm(n_state) |
|
|
|
self.cross_attn = ( |
|
MultiHeadAttention(n_state, n_head) if cross_attention else None |
|
) |
|
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None |
|
|
|
n_mlp = n_state * 4 |
|
self.mlp = nn.Sequential( |
|
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) |
|
) |
|
self.mlp_ln = LayerNorm(n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
xa: Optional[Tensor] = None, |
|
mask: Optional[Tensor] = None, |
|
kv_cache: Optional[dict] = None, |
|
): |
|
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0] |
|
if self.cross_attn: |
|
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0] |
|
x = x + self.mlp(self.mlp_ln(x)) |
|
return x |
|
|
|
|
|
class AudioEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
n_mels: int, |
|
n_ctx: int, |
|
n_state: int, |
|
n_head: int, |
|
n_layer: int, |
|
output_dim: int = 512, |
|
avg_pool: bool = True, |
|
add_audio_bos_eos_token: bool = True, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) |
|
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) |
|
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) |
|
|
|
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( |
|
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] |
|
) |
|
self.ln_post = LayerNorm(n_state) |
|
|
|
if avg_pool: |
|
self.avg_pooler = nn.AvgPool1d(2, stride=2) |
|
else: |
|
self.avg_pooler = None |
|
self.proj = nn.Linear(n_state, output_dim) |
|
if add_audio_bos_eos_token: |
|
self.audio_bos_eos_token = nn.Embedding(2, output_dim) |
|
else: |
|
self.audio_bos_eos_token = None |
|
self.output_dim = output_dim |
|
self.n_head = n_head |
|
|
|
def forward(self, x: Tensor, padding_mask: Tensor=None, audio_lengths: Tensor=None): |
|
""" |
|
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) |
|
the mel spectrogram of the audio |
|
""" |
|
x = x.to(dtype=self.conv1.weight.dtype, |
|
device=self.conv1.weight.device) |
|
if audio_lengths is not None: |
|
input_mel_len = audio_lengths[:,0] * 2 |
|
max_mel_len_in_batch = input_mel_len.max() |
|
x = x[:, :, :max_mel_len_in_batch] |
|
x = F.gelu(self.conv1(x)) |
|
x = F.gelu(self.conv2(x)) |
|
x = x.permute(0, 2, 1) |
|
bsz = x.size(0) |
|
src_len = x.size(1) |
|
|
|
|
|
self.input_positional_embedding = self.positional_embedding[:src_len] |
|
assert x.shape[1:] == self.input_positional_embedding.shape, f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}" |
|
x = (x + self.input_positional_embedding).to(x.dtype) |
|
if padding_mask is not None: |
|
padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype, |
|
device=self.conv1.weight.device) |
|
batch_src_len = padding_mask.size(1) |
|
x = x[:, :batch_src_len, :] |
|
padding_mask = padding_mask.view( |
|
bsz, -1, batch_src_len |
|
) |
|
padding_mask_ = padding_mask.all(1) |
|
x[padding_mask_] = 0 |
|
key_padding_mask = padding_mask_.view(bsz, 1, 1, batch_src_len). \ |
|
expand(-1, self.n_head, -1, -1).reshape(bsz, self.n_head, 1, batch_src_len) |
|
new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype) |
|
padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf")) |
|
|
|
for block in self.blocks: |
|
x = block(x, mask=padding_mask) |
|
|
|
|
|
if self.avg_pooler: |
|
x = x.permute(0, 2, 1) |
|
x = self.avg_pooler(x) |
|
x = x.permute(0, 2, 1) |
|
|
|
|
|
x = self.ln_post(x) |
|
x = self.proj(x) |
|
|
|
if self.audio_bos_eos_token is not None: |
|
bos = self.audio_bos_eos_token.weight[0][None, :] |
|
eos = self.audio_bos_eos_token.weight[1][None, :] |
|
else: |
|
bos, eos = None, None |
|
return x, bos, eos |
|
|
|
def encode(self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List): |
|
real_input_audio_lens = input_audio_lengths[:, 0].tolist() |
|
max_len_in_batch = max(real_input_audio_lens) |
|
padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(dtype=self.conv1.weight.dtype, |
|
device=self.conv1.weight.device) |
|
for index in range(len(input_audios)): |
|
padding_mask[index, :input_audio_lengths[index][0].item()] = 0 |
|
x, bos, eos = self(input_audios, padding_mask,input_audio_lengths) |
|
output_audios = [] |
|
for i in range(len(audio_span_tokens)): |
|
audio_span = audio_span_tokens[i] |
|
audio = x[i][:audio_span-2] |
|
if bos is not None: |
|
audio = torch.concat([bos, audio, eos]) |
|
assert len(audio) == audio_span |
|
output_audios.append(audio) |
|
return output_audios |