Qwen-Audio-nf4 / audio.py
Ostixe360's picture
Create audio.py
c072008 verified
raw
history blame
15 kB
import base64
import gzip
from dataclasses import dataclass
from typing import Dict, Iterable, Optional, List
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from subprocess import CalledProcessError, run, Popen, PIPE
import os
from functools import lru_cache
from typing import Optional, Union
def exact_div(x, y):
assert x % y == 0
return x // y
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
N_MELS = 80
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
def get_T_after_cnn(L_in, dilation=1):
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
L_out = 1 + L_out // stride
L_in = L_out
return L_out
def load_bytesio_audio(content, sr: int = SAMPLE_RATE):
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", "pipe:",
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"pipe:"
]
p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, bufsize=-1)
out, _ = p.communicate(input=content)
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
"-threads", "0",
"-i", file,
"-f", "s16le",
"-ac", "1",
"-acodec", "pcm_s16le",
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
def trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
return array
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
)
"""
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
with np.load(
os.path.join(os.path.dirname(__file__), "mel_filters.npz") # todo
# os.path.join("assets", "mel_filters.npz")
) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
def log_mel_spectrogram(
audio: Union[str, np.ndarray, torch.Tensor],
n_mels: int = N_MELS,
padding: int = 0,
device: Optional[Union[str, torch.device]] = None,
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 is supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
@dataclass
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
# return super().forward(x.float()).type(x.dtype)
return super().forward(x).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(
x,
self.weight.to(x.dtype),
None if self.bias is None else self.bias.to(x.dtype),
)
class Conv1d(nn.Conv1d):
def _conv_forward(
self, x: Tensor, weight: Tensor, bias: Optional[Tensor]
) -> Tensor:
return super()._conv_forward(
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
)
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
wv, qk = self.qkv_attention(q, k, v, mask)
return self.out(wv), qk
def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k
if mask is not None:
qk += mask
w = F.softmax(qk, dim=-1).to(q.dtype)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = (
MultiHeadAttention(n_state, n_head) if cross_attention else None
)
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
x = x + self.mlp(self.mlp_ln(x))
return x
class AudioEncoder(nn.Module):
def __init__(
self,
n_mels: int,
n_ctx: int,
n_state: int,
n_head: int,
n_layer: int,
output_dim: int = 512,
avg_pool: bool = True,
add_audio_bos_eos_token: bool = True,
**kwargs
):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
)
self.ln_post = LayerNorm(n_state)
if avg_pool:
self.avg_pooler = nn.AvgPool1d(2, stride=2)
else:
self.avg_pooler = None
self.proj = nn.Linear(n_state, output_dim)
if add_audio_bos_eos_token:
self.audio_bos_eos_token = nn.Embedding(2, output_dim)
else:
self.audio_bos_eos_token = None
self.output_dim = output_dim
self.n_head = n_head
def forward(self, x: Tensor, padding_mask: Tensor=None, audio_lengths: Tensor=None):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
"""
x = x.to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
if audio_lengths is not None:
input_mel_len = audio_lengths[:,0] * 2
max_mel_len_in_batch = input_mel_len.max()
x = x[:, :, :max_mel_len_in_batch]
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1) # B, L, D
bsz = x.size(0)
src_len = x.size(1)
self.input_positional_embedding = self.positional_embedding[:src_len]
assert x.shape[1:] == self.input_positional_embedding.shape, f"incorrect audio shape: {x.shape[1:], self.input_positional_embedding.shape}"
x = (x + self.input_positional_embedding).to(x.dtype)
if padding_mask is not None:
padding_mask = padding_mask.to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
batch_src_len = padding_mask.size(1)
x = x[:, :batch_src_len, :]
padding_mask = padding_mask.view(
bsz, -1, batch_src_len
)
padding_mask_ = padding_mask.all(1)
x[padding_mask_] = 0
key_padding_mask = padding_mask_.view(bsz, 1, 1, batch_src_len). \
expand(-1, self.n_head, -1, -1).reshape(bsz, self.n_head, 1, batch_src_len)
new_padding_mask = torch.zeros_like(key_padding_mask, dtype=x.dtype)
padding_mask = new_padding_mask.masked_fill(key_padding_mask, float("-inf"))
for block in self.blocks:
x = block(x, mask=padding_mask)
if self.avg_pooler:
x = x.permute(0, 2, 1)
x = self.avg_pooler(x)
x = x.permute(0, 2, 1)
x = self.ln_post(x)
x = self.proj(x)
if self.audio_bos_eos_token is not None:
bos = self.audio_bos_eos_token.weight[0][None, :]
eos = self.audio_bos_eos_token.weight[1][None, :]
else:
bos, eos = None, None
return x, bos, eos
def encode(self, input_audios: Tensor, input_audio_lengths: Tensor, audio_span_tokens: List):
real_input_audio_lens = input_audio_lengths[:, 0].tolist()
max_len_in_batch = max(real_input_audio_lens)
padding_mask = torch.ones([input_audios.size(0), max_len_in_batch]).to(dtype=self.conv1.weight.dtype,
device=self.conv1.weight.device)
for index in range(len(input_audios)):
padding_mask[index, :input_audio_lengths[index][0].item()] = 0
x, bos, eos = self(input_audios, padding_mask,input_audio_lengths)
output_audios = []
for i in range(len(audio_span_tokens)):
audio_span = audio_span_tokens[i]
audio = x[i][:audio_span-2]
if bos is not None:
audio = torch.concat([bos, audio, eos])
assert len(audio) == audio_span
output_audios.append(audio)
return output_audios