File size: 8,032 Bytes
d79115c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple

class MultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.num_heads
        
        self.query = nn.Linear(config.hidden_size, config.hidden_size)
        self.key = nn.Linear(config.hidden_size, config.hidden_size)
        self.value = nn.Linear(config.hidden_size, config.hidden_size)
        self.out = nn.Linear(config.hidden_size, config.hidden_size)
        
        self.dropout = nn.Dropout(config.attention_dropout)
        
    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size, seq_length = hidden_states.shape[:2]
        
        # Project queries, keys, and values
        query_states = self.query(hidden_states)
        key_states = self.key(hidden_states)
        value_states = self.value(hidden_states)
        
        # Reshape for multi-head attention
        query_states = query_states.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2)
        key_states = key_states.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2)
        value_states = value_states.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2)
        
        # Calculate attention scores
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.head_size)
        
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask
            
        attention_probs = F.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)
        
        if head_mask is not None:
            attention_probs = attention_probs * head_mask
            
        # Apply attention to values
        context_layer = torch.matmul(attention_probs, value_states)
        context_layer = context_layer.transpose(1, 2).contiguous()
        
        # Reshape back
        context_layer = context_layer.view(batch_size, seq_length, self.hidden_size)
        context_layer = self.out(context_layer)
        
        return context_layer, attention_probs
        
class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
        self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
        self.act = nn.GELU()
        self.dropout = nn.Dropout(config.hidden_dropout)
        
    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense_h_to_4h(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dense_4h_to_h(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states
        
class TransformerBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = MultiHeadAttention(config)
        self.mlp = MLP(config)
        self.input_layernorm = nn.LayerNorm(config.hidden_size)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout)
        
    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self-attention
        attention_layernorm_out = self.input_layernorm(hidden_states)
        attention_output, attention_probs = self.attention(
            attention_layernorm_out,
            attention_mask=attention_mask,
            head_mask=head_mask,
        )
        attention_output = self.dropout(attention_output)
        
        # Add & norm
        attention_output = attention_output + hidden_states
        
        # MLP
        mlp_layernorm_out = self.post_attention_layernorm(attention_output)
        mlp_output = self.mlp(mlp_layernorm_out)
        
        # Add & norm
        layer_output = mlp_output + attention_output
        
        return layer_output, attention_probs
        
class OpenPeerLLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        
        # Token embeddings
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        
        # Transformer layers
        self.layers = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_hidden_layers)])
        
        # Final layer norm
        self.final_layernorm = nn.LayerNorm(config.hidden_size)
        
        # Output head
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        # Initialize weights
        self.init_weights()
        
    def init_weights(self):
        """Initialize weights with small random values"""
        self.apply(self._init_weights)
        
    def _init_weights(self, module):
        """Initialize weights for different layer types"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
            
    def forward(

        self,

        input_ids: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

    ) -> Tuple[torch.Tensor, ...]:
        batch_size, seq_length = input_ids.shape
        
        # Create position IDs
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
        
        # Get embeddings
        inputs_embeds = self.word_embeddings(input_ids)
        position_embeds = self.position_embeddings(position_ids)
        
        # Combine embeddings
        hidden_states = inputs_embeds + position_embeds
        
        # Create attention mask if needed
        if attention_mask is not None:
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = attention_mask.to(dtype=hidden_states.dtype)
            attention_mask = (1.0 - attention_mask) * torch.finfo(hidden_states.dtype).min
            
        # Process through transformer layers
        all_attentions = []
        for layer in self.layers:
            hidden_states, attention_probs = layer(hidden_states, attention_mask)
            all_attentions.append(attention_probs)
            
        # Final layer norm
        hidden_states = self.final_layernorm(hidden_states)
        
        # Get logits
        logits = self.lm_head(hidden_states)
        
        # Calculate loss if labels provided
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
            
        return {
            "loss": loss,
            "logits": logits,
            "hidden_states": hidden_states,
            "attentions": all_attentions,
        }