|
--- |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: 'def factorial(n):' |
|
example_title: Factorial |
|
group: Python |
|
- text: 'def recur_fibo(n):' |
|
example_title: Recursive Fibonacci |
|
group: Python |
|
license: llama2 |
|
library_name: transformers |
|
tags: |
|
- text-generation |
|
- code |
|
- text-generation-inference |
|
language: |
|
- en |
|
--- |
|
|
|
# lemur-70b-chat-v1 |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/OpenLemur/assets/resolve/main/lemur_icon.png" width="300" height="300" alt="Lemur"> |
|
</p> |
|
|
|
|
|
## Model Summary |
|
|
|
- **Repository:** [OpenLemur/lemur-v1](https://github.com/OpenLemur/lemur-v1) |
|
- **Project Website:** [xlang.ai](https://www.xlang.ai/) |
|
- **Paper:** [Coming soon](https://www.xlang.ai/) |
|
- **Point of Contact:** [mail@xlang.ai](mailto:mail@xlang.ai) |
|
|
|
|
|
## Use |
|
|
|
### Setup |
|
|
|
First, we have to install all the libraries listed in `requirements.txt` in [GitHub](https://github.com/OpenLemur/lemur-v1): |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Generation |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-chat-v1") |
|
model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-chat-v1", device_map="auto", load_in_8bit=True) |
|
|
|
# Text Generation Example |
|
prompt = "What's lemur's favorite fruit?" |
|
input = tokenizer(prompt, return_tensors="pt") |
|
output = model.generate(**input, max_length=50, num_return_sequences=1) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_text) |
|
|
|
# Code Generation Example |
|
prompt = "Write a Python function to merge two sorted lists into one sorted list without using any built-in sort functions." |
|
input = tokenizer(prompt, return_tensors="pt") |
|
output = model.generate(**input, max_length=200, num_return_sequences=1) |
|
generated_code = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(generated_code) |
|
``` |
|
|
|
# License |
|
The model is licensed under the Llama-2 community license agreement. |