lemur-70b-chat-v1 / README.md
tianbaoxiexxx's picture
Update README.md
61c9801
|
raw
history blame
1.97 kB
metadata
pipeline_tag: text-generation
inference: true
widget:
  - text: 'def factorial(n):'
    example_title: Factorial
    group: Python
  - text: 'def recur_fibo(n):'
    example_title: Recursive Fibonacci
    group: Python
license: llama2
library_name: transformers
tags:
  - text-generation
  - code
  - text-generation-inference
language:
  - en

lemur-70b-chat-v1

Lemur

Model Summary

Use

Setup

First, we have to install all the libraries listed in requirements.txt in GitHub:

pip install -r requirements.txt

Generation

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLemur/lemur-70b-chat-v1")
model = AutoModelForCausalLM.from_pretrained("OpenLemur/lemur-70b-chat-v1", device_map="auto", load_in_8bit=True)

# Text Generation Example
prompt = "What's lemur's favorite fruit?"
input = tokenizer(prompt, return_tensors="pt")
output = model.generate(**input, max_length=50, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)

# Code Generation Example
prompt = "Write a Python function to merge two sorted lists into one sorted list without using any built-in sort functions."
input = tokenizer(prompt, return_tensors="pt")
output = model.generate(**input, max_length=200, num_return_sequences=1)
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_code)

License

The model is licensed under the Llama-2 community license agreement.