File size: 2,284 Bytes
bcc4f8b 2104fff bcc4f8b 2104fff bcc4f8b 2104fff bcc4f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: llama_8b_lima_42
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama_8b_lima_42
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the open_webui_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 3
- eval_batch_size: 2
- seed: 66
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 6
- total_train_batch_size: 36
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 50
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0356 | 0.0686 | 80 | 0.9711 |
| 1.0348 | 0.1372 | 160 | 0.9355 |
| 0.7212 | 0.2058 | 240 | 0.9225 |
| 0.8077 | 0.2744 | 320 | 0.9142 |
| 0.8442 | 0.3430 | 400 | 0.9068 |
| 0.831 | 0.4116 | 480 | 0.9032 |
| 0.9696 | 0.4802 | 560 | 0.8975 |
| 0.9949 | 0.5488 | 640 | 0.8972 |
| 0.8154 | 0.6174 | 720 | 0.8948 |
| 0.9682 | 0.6860 | 800 | 0.8931 |
| 0.9491 | 0.7546 | 880 | 0.9030 |
| 1.068 | 0.8232 | 960 | 0.9022 |
| 1.06 | 0.8918 | 1040 | 0.9013 |
| 0.8302 | 0.9604 | 1120 | 0.9002 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
|