File size: 11,382 Bytes
c5760b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import copy

def find_prefix_seq_length_by_pe(
    pe: torch.Tensor
) -> torch.Tensor:
    """
    Find the sequence length where position encoding drops (indicating prefix boundary).
    Args:
        pe: Position encoding tensor of shape [Batch size, Sequence length ]
            Contains position indices for each token in the sequence.
    Returns:
        torch.Tensor: A tensor of shape [B] containing:
            - The index where position encoding drops for each sequence
            - -1 if no drop occurs in the sequence
    """
    batch_size, seq_len = pe.shape
    prev = pe[:, :-1]
    curr = pe[:, 1:]
    drop_mask = curr < prev  #  [batch_size, seq_len-1]

    seq_len = torch.full((batch_size,), -1, dtype=torch.long)
    
    for b in range(batch_size):
        drop_pos = torch.nonzero(drop_mask[b], as_tuple=False)
        if drop_pos.numel() > 0:
            i = drop_pos[0].item() + 1  # Take first drop position (+1 because we compared shifted sequences)
            seq_len[b] = i

    return seq_len



def update_causal_mask_with_pad_non_visible_2d(
    input_ids: torch.Tensor,
    attn_mask_2d: torch.Tensor,
    text_mask_token_id: int = 151666,
    block_size: int = 4,
    causal_attn: bool = False
) -> torch.Tensor:
    """
    Updates a 2D attention mask for hole sequence through input_ids and text_mask_token_id

    Args:
        input_ids: Input token IDs (unused in current implementation)
        attn_mask_2d: 2D attention mask matrix of shape [seq_len, seq_len] where:
            - 0.0 indicates allowed attention
            - -inf indicates masked attention
        text_mask_token_id: ID representing masked tokens
        block_size: Size of the diffusion window
        causal_attn: If True, maintains strict causal masking throughout
    
    Returns:
        Modified attention mask with updated visibility patterns
    """
    seq_len = input_ids.shape[0]
    device = input_ids.device

    # Identify masked tokens and their preceding positions
    input_mask = input_ids.eq(text_mask_token_id)
    input_before_mask = torch.zeros_like(input_mask)
    input_before_mask[:-1] = input_mask[1:]
    mask_cols = (input_mask | input_before_mask)
    non_mask = ~mask_cols

    rows = torch.arange(seq_len, device=device)[:, None]  # (seq_len, 1)
    cols = torch.arange(seq_len, device=device)  # (seq_len,)


    indices = torch.arange(seq_len, device=device)
    prev_non_mask = (indices * non_mask).cummax(dim=0).values

    max_value = torch.iinfo(indices.dtype).max
    mask_indices = torch.where(non_mask, indices, torch.full_like(indices, max_value))
    reversed_mask_indices = torch.flip(mask_indices, dims=[0])
    reversed_cummin = reversed_mask_indices.cummin(dim=0).values
    next_non_mask = torch.flip(reversed_cummin, dims=[0])

    # ================= Part 1: Make positions after masks invisible =================
    infra_mask = (
            (cols > prev_non_mask) &
            (rows >= next_non_mask[None, :]) &
            mask_cols[None, :]
    )
    attn_mask_2d.masked_fill_(infra_mask, -float('inf'))

    # ================= Part 2: Allow visibility to previous positions (if not causal) =================
    if not causal_attn:
        visible_mask = (
                (rows > prev_non_mask[None, :]) &  
                (rows < cols) &  
                mask_cols[None, :]  
        )
        attn_mask_2d.masked_fill_(visible_mask, 0.0)

    return attn_mask_2d


def update_causal_mask_for_one_gen_window_2d(
    input_ids: torch.Tensor,
    attn_mask_2d: torch.Tensor,
    block_size: int = 4,
    use_cache: bool = True,
    causal_attn: bool = False
) -> torch.Tensor:
    """
    Updates a 2D attention mask for a diffusion window in transformer inference.

    Args:
        input_ids: Input token IDs (unused in current implementation)
        attn_mask_2d: 2D attention mask matrix of shape [seq_len, seq_len] where:
            - 0.0 indicates allowed attention
            - -inf indicates masked attention
        block_size: Size of the diffusion window
        use_cache: Whether key-value cache is being used
        causal_attn: If True, maintains strict causal masking throughout
    
    Returns:
        Modified attention mask with updated visibility patterns
    """

    if not causal_attn:
        # Make the diffusion window (last block_size tokens) fully visible to itself
        # This allows bidirectional attention within the diffusion window
        attn_mask_2d[-block_size:, -block_size:] = 0.0
    if use_cache:
        # Mask the last token from previous round to prevent recomputation and maintain generation consistency.
        attn_mask_2d[-block_size:, -block_size-1] = -float('inf')

    return attn_mask_2d


def create_block_diff_mask_by_pe_1d(
    b: int,
    h: int,
    q_idx: torch.Tensor,
    kv_idx: torch.Tensor,
    block_size: int,
    x0_len_list: torch.Tensor,
    position_ids_list: torch.Tensor,
    causal_attn: bool = False,
) -> torch.Tensor:
    """Computes attention mask for a single query-key position in Flex Attention.

    Args:
        b (int): Batch index (0 <= b < batch_size).
        h (int): Head index (unused in current implementation, reserved for future multi-head support).
        q_idx (torch.Tensor): Query position index (scalar or 0D tensor).
        kv_idx (torch.Tensor): Key/Value position index (scalar or 0D tensor).
        block_size (int): Size of processing blocks for non-`x0` tokens.
        x0_len_list (torch.Tensor): Tensor of shape [batch_size] with `x0` segment lengths.
        position_ids_list (torch.Tensor): Tensor of shape [batch_size, seq_len] with position IDs.
        causal_attn (bool, optional): Enforces causal masking in mutual blocks if True. Defaults to False.

    Returns:
        torch.Tensor: Boolean indicating whether attention is allowed (True = allowed).
    """
    x0_len = x0_len_list[b]
    position_ids = position_ids_list[b]

    x0_flag_q = (q_idx < x0_len)
    x0_flag_kv = (kv_idx < x0_len)

    # top - left  causal
    block_causal = (
        x0_flag_q & \
        x0_flag_kv & \
        (q_idx >= kv_idx)
    )

    q_ith_block = (q_idx - x0_len) // block_size
    kv_ith_block = (kv_idx - x0_len) // block_size

    # bottom - right
    block_mutual = (
        (~x0_flag_q & ~x0_flag_kv) & \
        (q_ith_block == kv_ith_block) & \
        (q_idx >= kv_idx if causal_attn else 1)
    )

    # bottom - left
    prefix_len = position_ids[x0_len + q_ith_block * block_size] # kv_idx's cosponding prefix
    block_prefix = (
        (~x0_flag_q & x0_flag_kv) & \
        (kv_idx < prefix_len)
    )
    
    mask_val = (block_causal | block_mutual | block_prefix)
    return mask_val.to(torch.bool)


def create_block_diff_mask_by_pe_4d(
    block_size: int, 
    x0_len_list: torch.Tensor, 
    position_ids: torch.Tensor, 
    causal_attn: bool = False
) -> tuple[torch.Tensor, torch.Tensor]:
    """Generates a 4D attention mask for block-difference attention patterns.

    The mask consists of three regions:
    1. Causal block (top-left): Standard causal attention for `x0` tokens.
    2. Mutual block (bottom-right): Non-causal attention within the same block for non-`x0` tokens.
    3. Prefix block (bottom-left): Non-`x0` tokens can attend to a prefix of `x0` tokens.

    Args:
        block_size (int): Size of processing blocks for non-`x0` tokens.
        x0_len_list (torch.Tensor): Tensor of shape [B] containing lengths of `x0` segments per batch.
        position_ids (torch.Tensor): Tensor of shape [B, seq_len] containing position IDs.
        causal_attn (bool, optional): If True, enforces causal masking in mutual blocks. Defaults to False.

    Returns:
        tuple[torch.Tensor, torch.Tensor]:
            - A float mask of shape [batch_size, 1, seq_len, seq_len] with `-inf` for masked positions (non visiable).
            - A boolean mask of shape [batch_size, 1, seq_len, seq_len] indicating allowed attention positions.
    """
    batch_size, seq_len = position_ids.shape
    device = position_ids.device
    
    # Create position indices [batch_size, seq_len, seq_len]
    q_idx = torch.arange(seq_len, device=device).view(1, seq_len, 1)  # [1, seq_len, 1]
    kv_idx = torch.arange(seq_len, device=device).view(1, 1, seq_len)  # [1, 1, seq_len]
    
    # Broadcast to [B, seq_len, seq_len]
    x0_len = x0_len_list.view(batch_size, 1, 1)  # [batch_size, 1, 1]
    x0_flag_q = q_idx < x0_len           # [batch_size, seq_len, seq_len]
    x0_flag_kv = kv_idx < x0_len         
    
    # Block indices calculation [batch_size, seq_len, seq_len]
    q_block_idx = (q_idx - x0_len) // block_size
    kv_block_idx = (kv_idx - x0_len) // block_size
    
    # causal block (top-left)
    block_causal = x0_flag_q & x0_flag_kv & (q_idx >= kv_idx)

    # Mutual block (bottom-right)
    mutual_condition = (q_idx >= kv_idx) if causal_attn else torch.ones_like(q_idx, dtype=torch.bool)
    block_mutual = (~x0_flag_q & ~x0_flag_kv & 
                   (q_block_idx == kv_block_idx) & 
                   mutual_condition)

    # Prefix block (bottom-left)
    q_blk  = torch.div(q_idx - x0_len, block_size, rounding_mode='floor')
    q_blk_start = (x0_len_list.view(batch_size, 1) + q_blk[:, :, 0] * block_size).clamp(min=0, max=seq_len-1)  # (batch_size, L)
    prefix_len = position_ids.gather(1, q_blk_start)
    prefix_len = prefix_len.unsqueeze(2)            
    block_prefix = (~x0_flag_q & x0_flag_kv) & (kv_idx < prefix_len)

    # FIXME Padding Mask
    # padding_mask = (position_ids.view(batch_size, 1, seq_len) != -1) & (position_ids.view(batch_size, seq_len, -1) != -1)
    
    # Combine masks
    final_mask = (block_causal | block_mutual | block_prefix)  # bool
    # & padding_mask
    customized_mask = torch.full_like(final_mask, float('-inf'), dtype=torch.bfloat16)
    customized_mask.masked_fill_(final_mask, 0.0) # 0.0 or -inf
    
    # Add head dimension [batch_size, 1, seq_len, seq_len]
    return customized_mask.unsqueeze(1).to(device=device), final_mask.unsqueeze(1).to(device=device)


def find_pred_pos_from_input_ids(
    input_ids: torch.LongTensor = None,
    text_mask_token_id: int = 151666,
) -> torch.Tensor:
    """Compute the relative prediction positions for masked tokens in a sequence.

    For non-masked positions, the output is 0. For masked positions, the value increments
    by 1 for each consecutive mask token, indicating how many steps ahead the prediction is.

    Args:
        input_ids (torch.LongTensor): Input token IDs of shape [batch_size, seq_len].
        text_mask_token_id (int, optional): Token ID representing masked positions. Defaults to 151666.

    Returns:
        torch.Tensor: A tensor of shape [batch_size, seq_len] where:
            - 0 indicates a non-masked token.
            - n > 0 indicates the nth consecutive masked token (e.g., 1 = first mask, 2 = second mask, etc.).
    """
    batch_size, seq_len = input_ids.shape
    device = input_ids.device

    is_mask = (input_ids == text_mask_token_id)

    base_mask = torch.zeros((batch_size, seq_len), dtype=torch.int8, device=device)

    for b in range(batch_size):
        for ix in range(1, seq_len):
            if is_mask[b][ix] == True:
                # Increment counter if current token is masked
                base_mask[b][ix] = base_mask[b][ix-1] + 1

    return base_mask