Files changed (1) hide show
  1. README.md +0 -484
README.md CHANGED
@@ -88,95 +88,6 @@ We provide an example code to run Mono-InternVL-2B using `transformers`.
88
 
89
  > Please use transformers==4.37.2TODO to ensure the model works normally.
90
 
91
- ### Model Loading
92
-
93
- #### 16-bit (bf16 / fp16)
94
-
95
- ```python
96
- import torch
97
- from transformers import AutoTokenizer, AutoModel
98
- path = "OpenGVLab/Mono-InternVL-2B"
99
- model = AutoModel.from_pretrained(
100
- path,
101
- torch_dtype=torch.bfloat16,
102
- low_cpu_mem_usage=True,
103
- use_flash_attn=True,
104
- trust_remote_code=True).eval().cuda()
105
- ```
106
-
107
- #### BNB 8-bit Quantization
108
-
109
- ```python
110
- import torch
111
- from transformers import AutoTokenizer, AutoModel
112
- path = "OpenGVLab/Mono-InternVL-2B"
113
- model = AutoModel.from_pretrained(
114
- path,
115
- torch_dtype=torch.bfloat16,
116
- load_in_8bit=True,
117
- low_cpu_mem_usage=True,
118
- use_flash_attn=True,
119
- trust_remote_code=True).eval()
120
- ```
121
-
122
- #### BNB 4-bit Quantization
123
-
124
- ```python
125
- import torch
126
- from transformers import AutoTokenizer, AutoModel
127
- path = "OpenGVLab/Mono-InternVL-2B"
128
- model = AutoModel.from_pretrained(
129
- path,
130
- torch_dtype=torch.bfloat16,
131
- load_in_4bit=True,
132
- low_cpu_mem_usage=True,
133
- use_flash_attn=True,
134
- trust_remote_code=True).eval()
135
- ```
136
-
137
- #### Multiple GPUs
138
-
139
- The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
140
-
141
- ```python
142
- import math
143
- import torch
144
- from transformers import AutoTokenizer, AutoModel
145
-
146
- def split_model(model_name):
147
- device_map = {}
148
- world_size = torch.cuda.device_count()
149
- num_layers = {'Mono-InternVL-2B': 24}[model_name]
150
- # Since the first GPU will be used for ViT, treat it as half a GPU.
151
- num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
152
- num_layers_per_gpu = [num_layers_per_gpu] * world_size
153
- num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
154
- layer_cnt = 0
155
- for i, num_layer in enumerate(num_layers_per_gpu):
156
- for j in range(num_layer):
157
- device_map[f'language_model.model.layers.{layer_cnt}'] = i
158
- layer_cnt += 1
159
- device_map['vision_model'] = 0
160
- device_map['mlp1'] = 0
161
- device_map['language_model.model.tok_embeddings'] = 0
162
- device_map['language_model.model.embed_tokens'] = 0
163
- device_map['language_model.output'] = 0
164
- device_map['language_model.model.norm'] = 0
165
- device_map['language_model.lm_head'] = 0
166
- device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
167
-
168
- return device_map
169
-
170
- path = "OpenGVLab/Mono-InternVL-2B"
171
- device_map = split_model('Mono-InternVL-2B')
172
- model = AutoModel.from_pretrained(
173
- path,
174
- torch_dtype=torch.bfloat16,
175
- low_cpu_mem_usage=True,
176
- use_flash_attn=True,
177
- trust_remote_code=True,
178
- device_map=device_map).eval()
179
- ```
180
 
181
  ### Inference with Transformers
182
 
@@ -300,267 +211,6 @@ question = 'Please write a poem according to the image.'
300
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
301
  print(f'User: {question}\nAssistant: {response}')
302
 
303
- # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
304
- pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
305
- pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
306
- pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
307
-
308
- question = '<image>\nDescribe the two images in detail.'
309
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
310
- history=None, return_history=True)
311
- print(f'User: {question}\nAssistant: {response}')
312
-
313
- question = 'What are the similarities and differences between these two images.'
314
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
315
- history=history, return_history=True)
316
- print(f'User: {question}\nAssistant: {response}')
317
-
318
- # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
319
- pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
320
- pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
321
- pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
322
- num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
323
-
324
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
325
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
326
- num_patches_list=num_patches_list,
327
- history=None, return_history=True)
328
- print(f'User: {question}\nAssistant: {response}')
329
-
330
- question = 'What are the similarities and differences between these two images.'
331
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
332
- num_patches_list=num_patches_list,
333
- history=history, return_history=True)
334
- print(f'User: {question}\nAssistant: {response}')
335
-
336
- # batch inference, single image per sample (单图批处理)
337
- pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
338
- pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
339
- num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
340
- pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
341
-
342
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
343
- responses = model.batch_chat(tokenizer, pixel_values,
344
- num_patches_list=num_patches_list,
345
- questions=questions,
346
- generation_config=generation_config)
347
- for question, response in zip(questions, responses):
348
- print(f'User: {question}\nAssistant: {response}')
349
-
350
- # video multi-round conversation (视频多轮对话)
351
- def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
352
- if bound:
353
- start, end = bound[0], bound[1]
354
- else:
355
- start, end = -100000, 100000
356
- start_idx = max(first_idx, round(start * fps))
357
- end_idx = min(round(end * fps), max_frame)
358
- seg_size = float(end_idx - start_idx) / num_segments
359
- frame_indices = np.array([
360
- int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
361
- for idx in range(num_segments)
362
- ])
363
- return frame_indices
364
-
365
- def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
366
- vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
367
- max_frame = len(vr) - 1
368
- fps = float(vr.get_avg_fps())
369
-
370
- pixel_values_list, num_patches_list = [], []
371
- transform = build_transform(input_size=input_size)
372
- frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
373
- for frame_index in frame_indices:
374
- img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
375
- img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
376
- pixel_values = [transform(tile) for tile in img]
377
- pixel_values = torch.stack(pixel_values)
378
- num_patches_list.append(pixel_values.shape[0])
379
- pixel_values_list.append(pixel_values)
380
- pixel_values = torch.cat(pixel_values_list)
381
- return pixel_values, num_patches_list
382
-
383
- video_path = './examples/red-panda.mp4'
384
- pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
385
- pixel_values = pixel_values.to(torch.bfloat16).cuda()
386
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
387
- question = video_prefix + 'What is the red panda doing?'
388
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
389
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
390
- num_patches_list=num_patches_list, history=None, return_history=True)
391
- print(f'User: {question}\nAssistant: {response}')
392
-
393
- question = 'Describe this video in detail. Don\'t repeat.'
394
- response, history = model.chat(tokenizer, pixel_values, question, generation_config,
395
- num_patches_list=num_patches_list, history=history, return_history=True)
396
- print(f'User: {question}\nAssistant: {response}')
397
- ```
398
-
399
- #### Streaming output
400
-
401
- Besides this method, you can also use the following code to get streamed output.
402
-
403
- ```python
404
- from transformers import TextIteratorStreamer
405
- from threading import Thread
406
-
407
- # Initialize the streamer
408
- streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
409
- # Define the generation configuration
410
- generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
411
- # Start the model chat in a separate thread
412
- thread = Thread(target=model.chat, kwargs=dict(
413
- tokenizer=tokenizer, pixel_values=pixel_values, question=question,
414
- history=None, return_history=False, generation_config=generation_config,
415
- ))
416
- thread.start()
417
-
418
- # Initialize an empty string to store the generated text
419
- generated_text = ''
420
- # Loop through the streamer to get the new text as it is generated
421
- for new_text in streamer:
422
- if new_text == model.conv_template.sep:
423
- break
424
- generated_text += new_text
425
- print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
426
- ```
427
-
428
- ## Finetune
429
-
430
- Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
431
-
432
- ## Deployment
433
-
434
- ### LMDeploy
435
-
436
- LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
437
-
438
- ```sh
439
- pip install lmdeploy==0.5.3
440
- ```
441
-
442
- LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
443
-
444
- #### A 'Hello, world' example
445
-
446
- ```python
447
- from lmdeploy import pipeline, TurbomindEngineConfig
448
- from lmdeploy.vl import load_image
449
-
450
- model = 'OpenGVLab/Mono-InternVL-2B'
451
- image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
452
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
453
- response = pipe(('describe this image', image))
454
- print(response.text)
455
- ```
456
-
457
- If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
458
-
459
- #### Multi-images inference
460
-
461
- When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
462
-
463
- > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
464
-
465
- ```python
466
- from lmdeploy import pipeline, TurbomindEngineConfig
467
- from lmdeploy.vl import load_image
468
- from lmdeploy.vl.constants import IMAGE_TOKEN
469
-
470
- model = 'OpenGVLab/Mono-InternVL-2B'
471
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
472
-
473
- image_urls=[
474
- 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
475
- 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
476
- ]
477
-
478
- images = [load_image(img_url) for img_url in image_urls]
479
- # Numbering images improves multi-image conversations
480
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
481
- print(response.text)
482
- ```
483
-
484
- #### Batch prompts inference
485
-
486
- Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
487
-
488
- ```python
489
- from lmdeploy import pipeline, TurbomindEngineConfig
490
- from lmdeploy.vl import load_image
491
-
492
- model = 'OpenGVLab/Mono-InternVL-2B'
493
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
494
-
495
- image_urls=[
496
- "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
497
- "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
498
- ]
499
- prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
500
- response = pipe(prompts)
501
- print(response)
502
- ```
503
-
504
- #### Multi-turn conversation
505
-
506
- There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
507
-
508
- ```python
509
- from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
510
- from lmdeploy.vl import load_image
511
-
512
- model = 'OpenGVLab/Mono-InternVL-2B'
513
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
514
-
515
- image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
516
- gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
517
- sess = pipe.chat(('describe this image', image), gen_config=gen_config)
518
- print(sess.response.text)
519
- sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
520
- print(sess.response.text)
521
- ```
522
-
523
- #### Service
524
-
525
- LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
526
-
527
- ```shell
528
- lmdeploy serve api_server OpenGVLab/Mono-InternVL-2B --backend turbomind --server-port 23333
529
- ```
530
-
531
- To use the OpenAI-style interface, you need to install OpenAI:
532
-
533
- ```shell
534
- pip install openai
535
- ```
536
-
537
- Then, use the code below to make the API call:
538
-
539
- ```python
540
- from openai import OpenAI
541
-
542
- client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
543
- model_name = client.models.list().data[0].id
544
- response = client.chat.completions.create(
545
- model=model_name,
546
- messages=[{
547
- 'role':
548
- 'user',
549
- 'content': [{
550
- 'type': 'text',
551
- 'text': 'describe this image',
552
- }, {
553
- 'type': 'image_url',
554
- 'image_url': {
555
- 'url':
556
- 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
557
- },
558
- }],
559
- }],
560
- temperature=0.8,
561
- top_p=0.8)
562
- print(response)
563
- ```
564
 
565
  ## License
566
 
@@ -634,140 +284,6 @@ Mono-InternVL在性能上优于当前最先进的MLLM Mini-InternVL-2B-1.5,并
634
 
635
  示例代码请[点击这里](#quick-start)。
636
 
637
- ## 微调
638
-
639
- 许多仓库现在都支持 InternVL 系列模型的微调,包括 [InternVL](https://github.com/OpenGVLab/InternVL)、[SWIFT](https://github.com/modelscope/ms-swift)、[XTurner](https://github.com/InternLM/xtuner) 等。请参阅它们的文档以获取更多微调细节。
640
-
641
- ## 部署
642
-
643
- ### LMDeploy
644
-
645
- LMDeploy 是由 MMRazor 和 MMDeploy 团队开发的用于压缩、部署和服务大语言模型(LLM)的工具包。
646
-
647
- ```sh
648
- pip install lmdeploy==0.5.3
649
- ```
650
-
651
- LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为一个易于使用的管道,类似于大语言模型(LLM)的推理管道。
652
-
653
- #### 一个“你好,世界”示例
654
-
655
- ```python
656
- from lmdeploy import pipeline, TurbomindEngineConfig
657
- from lmdeploy.vl import load_image
658
-
659
- model = 'OpenGVLab/Mono-InternVL-2B'
660
- image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
661
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
662
- response = pipe(('describe this image', image))
663
- print(response.text)
664
- ```
665
-
666
- 如果在执行此示例时出现 `ImportError`,请按照提示安装所需的依赖包。
667
-
668
- #### 多图像推理
669
-
670
- 在处理多张图像时,可以将它们全部放入一个列表中。请注意,多张图像会导致输入 token 数量增加,因此通常需要增加上下文窗口的大小。
671
-
672
- ```python
673
- from lmdeploy import pipeline, TurbomindEngineConfig
674
- from lmdeploy.vl import load_image
675
- from lmdeploy.vl.constants import IMAGE_TOKEN
676
-
677
- model = 'OpenGVLab/Mono-InternVL-2B'
678
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
679
-
680
- image_urls=[
681
- 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
682
- 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
683
- ]
684
-
685
- images = [load_image(img_url) for img_url in image_urls]
686
- # Numbering images improves multi-image conversations
687
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
688
- print(response.text)
689
- ```
690
-
691
- #### 批量Prompt推理
692
-
693
- 使用批量Prompt进行推理非常简单;只需将它们放在一个列表结构中:
694
-
695
- ```python
696
- from lmdeploy import pipeline, TurbomindEngineConfig
697
- from lmdeploy.vl import load_image
698
-
699
- model = 'OpenGVLab/Mono-InternVL-2B'
700
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
701
-
702
- image_urls=[
703
- "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
704
- "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
705
- ]
706
- prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
707
- response = pipe(prompts)
708
- print(response)
709
- ```
710
-
711
- #### 多轮对话
712
-
713
- 使用管道进行多轮对话有两种方法。一种是根据 OpenAI 的格式构建消息并使用上述方法,另一种是使用 `pipeline.chat` 接口。
714
-
715
- ```python
716
- from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
717
- from lmdeploy.vl import load_image
718
-
719
- model = 'OpenGVLab/Mono-InternVL-2B'
720
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
721
-
722
- image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
723
- gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
724
- sess = pipe.chat(('describe this image', image), gen_config=gen_config)
725
- print(sess.response.text)
726
- sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
727
- print(sess.response.text)
728
- ```
729
-
730
- #### API部署
731
-
732
- LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
733
-
734
- ```shell
735
- lmdeploy serve api_server OpenGVLab/Mono-InternVL-2B --backend turbomind --server-port 23333
736
- ```
737
-
738
- 为了使用OpenAI风格的API接口,您需要安装OpenAI:
739
-
740
- ```shell
741
- pip install openai
742
- ```
743
-
744
- 然后,使用下面的代码进行API调用:
745
-
746
- ```python
747
- from openai import OpenAI
748
-
749
- client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
750
- model_name = client.models.list().data[0].id
751
- response = client.chat.completions.create(
752
- model=model_name,
753
- messages=[{
754
- 'role':
755
- 'user',
756
- 'content': [{
757
- 'type': 'text',
758
- 'text': 'describe this image',
759
- }, {
760
- 'type': 'image_url',
761
- 'image_url': {
762
- 'url':
763
- 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
764
- },
765
- }],
766
- }],
767
- temperature=0.8,
768
- top_p=0.8)
769
- print(response)
770
- ```
771
 
772
  ## 开源许可证
773
 
 
88
 
89
  > Please use transformers==4.37.2TODO to ensure the model works normally.
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  ### Inference with Transformers
93
 
 
211
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
212
  print(f'User: {question}\nAssistant: {response}')
213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
 
215
  ## License
216
 
 
284
 
285
  示例代码请[点击这里](#quick-start)。
286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287
 
288
  ## 开源许可证
289