Image Feature Extraction
Transformers
Safetensors
intern_vit_6b
feature-extraction
custom_code

How do I use dynamic resolution?

#5
by nofreewill - opened

If I run the example found under HF LINK from:
InternViT-6B-448px-V1.5 2024.04.20 🤗 *HF link support dynamic resolution, super strong OCR (🔥new)
*https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5
"""
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
"""
pixel_values.shape gives me:
torch.Size([1, 3, 448, 448])

Which if I convert back to numpy array and visualize, it shows me the center cropped and rescaled version of the input image, although the model page says it's working with 1-12 tiles.

Is there a place where I can learn more about how I should process image inputs in order to utilize the dynamic input resolution?

OpenGVLab org

I'm sorry I didn't make it clear in the readme. The code for dynamic resolution is provided here:

https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5#model-usage

You should first split a large input image into many small tiles, and then feed them into the ViT.

This is the preprocess code for dynamic resolution:

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Image

from torchvision.transforms.functional import InterpolationMode


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

Thank you very much!
This means that the images are processed independently, I mean, there is no information sharing between the tiles in the vision encoder?

OpenGVLab org

Yes, you are right.

Sign up or log in to comment