1_6e-3_5_0.1
This model is a fine-tuned version of bert-large-uncased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.9459
- Accuracy: 0.7379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.006
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3359 | 1.0 | 590 | 1.9035 | 0.3798 |
1.5253 | 2.0 | 1180 | 0.9944 | 0.6217 |
1.219 | 3.0 | 1770 | 0.8943 | 0.6190 |
1.1715 | 4.0 | 2360 | 0.9268 | 0.6205 |
1.0411 | 5.0 | 2950 | 0.8576 | 0.6220 |
1.0356 | 6.0 | 3540 | 0.9342 | 0.6067 |
0.9697 | 7.0 | 4130 | 1.9873 | 0.4131 |
0.9799 | 8.0 | 4720 | 1.7366 | 0.4492 |
0.9846 | 9.0 | 5310 | 1.3262 | 0.6330 |
0.9154 | 10.0 | 5900 | 1.0899 | 0.5697 |
0.8903 | 11.0 | 6490 | 0.8476 | 0.6242 |
0.8245 | 12.0 | 7080 | 0.9154 | 0.6902 |
0.8927 | 13.0 | 7670 | 0.7204 | 0.6930 |
0.7654 | 14.0 | 8260 | 0.8502 | 0.6908 |
0.7533 | 15.0 | 8850 | 0.9376 | 0.6398 |
0.8225 | 16.0 | 9440 | 0.7376 | 0.7073 |
0.6919 | 17.0 | 10030 | 1.2361 | 0.5688 |
0.6861 | 18.0 | 10620 | 1.1219 | 0.6116 |
0.6514 | 19.0 | 11210 | 0.7409 | 0.7073 |
0.669 | 20.0 | 11800 | 1.1160 | 0.6379 |
0.6611 | 21.0 | 12390 | 0.8790 | 0.7156 |
0.6422 | 22.0 | 12980 | 0.9649 | 0.6550 |
0.5883 | 23.0 | 13570 | 1.1373 | 0.6324 |
0.5804 | 24.0 | 14160 | 1.2809 | 0.6156 |
0.5509 | 25.0 | 14750 | 0.8749 | 0.7229 |
0.5318 | 26.0 | 15340 | 0.8741 | 0.6969 |
0.5223 | 27.0 | 15930 | 0.7777 | 0.7168 |
0.4971 | 28.0 | 16520 | 0.8501 | 0.6985 |
0.4599 | 29.0 | 17110 | 0.8999 | 0.7156 |
0.4617 | 30.0 | 17700 | 0.8970 | 0.7297 |
0.4523 | 31.0 | 18290 | 0.9297 | 0.7171 |
0.4334 | 32.0 | 18880 | 0.9673 | 0.7315 |
0.4215 | 33.0 | 19470 | 0.8755 | 0.7263 |
0.4088 | 34.0 | 20060 | 0.9157 | 0.6988 |
0.3842 | 35.0 | 20650 | 1.0157 | 0.7349 |
0.3913 | 36.0 | 21240 | 0.8419 | 0.7300 |
0.3737 | 37.0 | 21830 | 0.7792 | 0.7266 |
0.373 | 38.0 | 22420 | 0.8775 | 0.7257 |
0.3718 | 39.0 | 23010 | 0.8662 | 0.7309 |
0.3449 | 40.0 | 23600 | 0.9173 | 0.7257 |
0.3585 | 41.0 | 24190 | 0.8719 | 0.7339 |
0.3299 | 42.0 | 24780 | 0.9434 | 0.7208 |
0.3137 | 43.0 | 25370 | 0.9660 | 0.7324 |
0.3228 | 44.0 | 25960 | 0.8873 | 0.7266 |
0.3134 | 45.0 | 26550 | 0.8953 | 0.7202 |
0.2873 | 46.0 | 27140 | 0.8243 | 0.7297 |
0.301 | 47.0 | 27730 | 0.8633 | 0.7324 |
0.271 | 48.0 | 28320 | 0.9646 | 0.7217 |
0.2907 | 49.0 | 28910 | 0.9321 | 0.7318 |
0.2785 | 50.0 | 29500 | 0.8440 | 0.7407 |
0.2554 | 51.0 | 30090 | 1.0258 | 0.7116 |
0.2715 | 52.0 | 30680 | 0.9458 | 0.7223 |
0.2556 | 53.0 | 31270 | 0.8895 | 0.7450 |
0.2488 | 54.0 | 31860 | 0.8865 | 0.7410 |
0.2528 | 55.0 | 32450 | 0.9360 | 0.7330 |
0.2444 | 56.0 | 33040 | 1.0095 | 0.7373 |
0.2391 | 57.0 | 33630 | 0.9704 | 0.7428 |
0.2386 | 58.0 | 34220 | 0.9717 | 0.7401 |
0.2193 | 59.0 | 34810 | 0.9480 | 0.7434 |
0.2338 | 60.0 | 35400 | 1.0054 | 0.7315 |
0.229 | 61.0 | 35990 | 0.8469 | 0.7361 |
0.2187 | 62.0 | 36580 | 0.8841 | 0.7324 |
0.2127 | 63.0 | 37170 | 0.9744 | 0.7260 |
0.2142 | 64.0 | 37760 | 0.9097 | 0.7407 |
0.2138 | 65.0 | 38350 | 0.9503 | 0.7281 |
0.2078 | 66.0 | 38940 | 0.8941 | 0.7379 |
0.2027 | 67.0 | 39530 | 0.8893 | 0.7379 |
0.2019 | 68.0 | 40120 | 0.9128 | 0.7333 |
0.1911 | 69.0 | 40710 | 0.9662 | 0.7382 |
0.2022 | 70.0 | 41300 | 1.0329 | 0.7388 |
0.1882 | 71.0 | 41890 | 0.9666 | 0.7232 |
0.2163 | 72.0 | 42480 | 0.9655 | 0.7333 |
0.1884 | 73.0 | 43070 | 0.9855 | 0.7254 |
0.1947 | 74.0 | 43660 | 0.9542 | 0.7324 |
0.1861 | 75.0 | 44250 | 0.9777 | 0.7413 |
0.1833 | 76.0 | 44840 | 0.9576 | 0.7388 |
0.1861 | 77.0 | 45430 | 0.9108 | 0.7404 |
0.1838 | 78.0 | 46020 | 0.9292 | 0.7352 |
0.1764 | 79.0 | 46610 | 0.9273 | 0.7413 |
0.1752 | 80.0 | 47200 | 0.9498 | 0.7355 |
0.1709 | 81.0 | 47790 | 0.9724 | 0.7343 |
0.1722 | 82.0 | 48380 | 0.8921 | 0.7364 |
0.1701 | 83.0 | 48970 | 1.0262 | 0.7398 |
0.168 | 84.0 | 49560 | 0.9239 | 0.7346 |
0.1633 | 85.0 | 50150 | 0.9714 | 0.7349 |
0.1666 | 86.0 | 50740 | 0.9723 | 0.7398 |
0.1634 | 87.0 | 51330 | 0.9497 | 0.7419 |
0.1657 | 88.0 | 51920 | 0.9417 | 0.7358 |
0.1481 | 89.0 | 52510 | 0.9709 | 0.7419 |
0.1557 | 90.0 | 53100 | 0.9928 | 0.7312 |
0.1567 | 91.0 | 53690 | 0.9443 | 0.7388 |
0.1568 | 92.0 | 54280 | 0.9285 | 0.7367 |
0.1579 | 93.0 | 54870 | 0.9201 | 0.7376 |
0.157 | 94.0 | 55460 | 0.9334 | 0.7376 |
0.1515 | 95.0 | 56050 | 0.9646 | 0.7394 |
0.1486 | 96.0 | 56640 | 0.9589 | 0.7385 |
0.1468 | 97.0 | 57230 | 0.9423 | 0.7379 |
0.1453 | 98.0 | 57820 | 0.9497 | 0.7382 |
0.1406 | 99.0 | 58410 | 0.9602 | 0.7373 |
0.1467 | 100.0 | 59000 | 0.9459 | 0.7379 |
Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.