File size: 1,456 Bytes
1315eff cec52bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# BERT base model (uncased)
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
between english and English.
# Original implementation
Follow [this link](https://huggingface.co/bert-base-uncased) to see the original implementation.
# How to use
Download the model by cloning the repository via `git clone https://huggingface.co/OWG/bert-base-uncased`.
Then you can use the model with the following code:
```python
from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
options = SessionOptions()
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
session = InferenceSession("path/to/model.onnx", sess_options=options)
session.disable_fallback()
text = "Replace me by any text you want to encode."
input_ids = tokenizer(text, return_tensors="pt", return_attention_mask=True)
inputs = {k: v.cpu().detach().numpy() for k, v in input_ids.items()}
outputs_name = session.get_outputs()[0].name
outputs = session.run(output_names=[outputs_name], input_feed=inputs)
```
|