Farseq -> Transformers conversion
#1
by
mys
- opened
- README.md +62 -4
- config.json +52 -0
- merges.txt +0 -0
- caption_base_best.pt → pytorch_model.bin +2 -2
- vocab.json +0 -0
README.md
CHANGED
@@ -1,6 +1,64 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
|
5 |
+
# OFA-base-caption
|
6 |
+
This is the **base** version of OFA model finetuned for the image captioning task. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework.
|
7 |
|
8 |
+
The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet.
|
9 |
+
|
10 |
+
To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below.
|
11 |
+
|
12 |
+
```
|
13 |
+
git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git
|
14 |
+
pip install OFA/transformers/
|
15 |
+
```
|
16 |
+
|
17 |
+
After, prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment.
|
18 |
+
|
19 |
+
```
|
20 |
+
import re
|
21 |
+
import time
|
22 |
+
from PIL import Image
|
23 |
+
from torchvision import transforms
|
24 |
+
from transformers import OFATokenizer, OFAModel
|
25 |
+
|
26 |
+
model_name = "OFA-sys/OFA-base-caption"
|
27 |
+
|
28 |
+
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
|
29 |
+
resolution = 256
|
30 |
+
|
31 |
+
patch_resize_transform = transforms.Compose([
|
32 |
+
lambda image: image.convert("RGB"),
|
33 |
+
transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC),
|
34 |
+
transforms.ToTensor(),
|
35 |
+
transforms.Normalize(mean=mean, std=std)
|
36 |
+
])
|
37 |
+
|
38 |
+
start = time.time()
|
39 |
+
tokenizer = OFATokenizer.from_pretrained(model_name)
|
40 |
+
model = OFAModel.from_pretrained(model_name, use_cache=False)
|
41 |
+
alapsed = time.time() - start
|
42 |
+
print(f"Loaded in {alapsed} secs")
|
43 |
+
|
44 |
+
|
45 |
+
def caption_image(txt, img):
|
46 |
+
inputs = tokenizer([txt], return_tensors="pt").input_ids
|
47 |
+
patch_img = patch_resize_transform(img).unsqueeze(0)
|
48 |
+
|
49 |
+
gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3)
|
50 |
+
results = tokenizer.batch_decode(gen, skip_special_tokens=True)
|
51 |
+
|
52 |
+
result = results[0].strip()
|
53 |
+
result = re.sub(r'[^\w\s]', '', result)
|
54 |
+
|
55 |
+
return result
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
txt = "What does the image describe?"
|
60 |
+
img = Image.open('/path/to/input/image.jpg')
|
61 |
+
caption = caption_image(txt, img)
|
62 |
+
print(caption)
|
63 |
+
|
64 |
+
```
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"add_type_embedding": true,
|
5 |
+
"architectures": [
|
6 |
+
"OFAModel"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"attn_scale_factor": 2.0,
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"code_image_size": 128,
|
13 |
+
"code_layernorm_embedding": true,
|
14 |
+
"d_model": 768,
|
15 |
+
"decoder_attention_heads": 12,
|
16 |
+
"decoder_drop_path_rate": 0.0,
|
17 |
+
"decoder_ffn_dim": 3072,
|
18 |
+
"decoder_layerdrop": 0.0,
|
19 |
+
"decoder_layers": 6,
|
20 |
+
"decoder_normalize_before": true,
|
21 |
+
"decoder_start_token_id": 0,
|
22 |
+
"dropout": 0.1,
|
23 |
+
"encoder_attention_heads": 12,
|
24 |
+
"encoder_drop_path_rate": 0.0,
|
25 |
+
"encoder_ffn_dim": 3072,
|
26 |
+
"encoder_layerdrop": 0.0,
|
27 |
+
"encoder_layers": 6,
|
28 |
+
"encoder_normalize_before": true,
|
29 |
+
"entangle_position_embedding": false,
|
30 |
+
"eos_token_id": 2,
|
31 |
+
"forced_eos_token_id": 2,
|
32 |
+
"image_bucket_size": 42,
|
33 |
+
"init_std": 0.02,
|
34 |
+
"is_encoder_decoder": true,
|
35 |
+
"layernorm_embedding": true,
|
36 |
+
"max_position_embeddings": 1024,
|
37 |
+
"model_type": "ofa",
|
38 |
+
"normformer": true,
|
39 |
+
"num_hidden_layers": 6,
|
40 |
+
"pad_token_id": 1,
|
41 |
+
"patch_layernorm_embedding": true,
|
42 |
+
"resnet_drop_path_rate": 0.0,
|
43 |
+
"resnet_model_path": null,
|
44 |
+
"resnet_type": "resnet101",
|
45 |
+
"scale_embedding": false,
|
46 |
+
"share_decoder_input_output_embed": true,
|
47 |
+
"token_bucket_size": 256,
|
48 |
+
"torch_dtype": "float32",
|
49 |
+
"transformers_version": "4.15.0",
|
50 |
+
"use_cache": false,
|
51 |
+
"vocab_size": 59457
|
52 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
caption_base_best.pt → pytorch_model.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521abbc85015e110be39ca7158579966b6e41101d012b961a5ea6aff18b3fe66
|
3 |
+
size 1161554935
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|