Nous-Capybara-34B / README.md
emozilla's picture
Create README.md
5a593d7
|
raw
history blame
2.12 kB
metadata
license: other
base_model: larryvrh/Yi-34B-200K-Llamafied
tags:
  - generated_from_trainer
model-index:
  - name: capybara-v4-yi-34b-200k
    results: []

Built with Axolotl

capybara-v4-yi-34b-200k

This model is a fine-tuned version of larryvrh/Yi-34B-200K-Llamafied on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.7201 0.31 200 0.7801
0.716 0.62 400 0.7240
0.6128 0.93 600 0.6696
0.4111 1.24 800 0.6016
0.415 1.55 1000 0.5395
0.3293 1.86 1200 0.4782
0.3271 2.17 1400 0.4272
0.2672 2.49 1600 0.3925
0.2129 2.8 1800 0.3638

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1