File size: 4,730 Bytes
9243d17
 
 
 
 
 
 
 
 
 
 
 
 
09359e6
 
9243d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09359e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Output_LayoutLMv3_v2
  results: []
datasets:
- Noureddinesa/LayoutLmv3
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Output_LayoutLMv3_v2

This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1240
- Precision: 0.8174
- Recall: 0.8319
- F1: 0.8246
- Accuracy: 0.9762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 2.27  | 100  | 0.5286          | 0.0       | 0.0    | 0.0    | 0.8867   |
| No log        | 4.55  | 200  | 0.4075          | 0.0       | 0.0    | 0.0    | 0.8867   |
| No log        | 6.82  | 300  | 0.3231          | 0.2258    | 0.0310 | 0.0545 | 0.8933   |
| No log        | 9.09  | 400  | 0.2612          | 0.5546    | 0.2920 | 0.3826 | 0.9210   |
| 0.4595        | 11.36 | 500  | 0.2246          | 0.5897    | 0.4071 | 0.4817 | 0.9295   |
| 0.4595        | 13.64 | 600  | 0.2004          | 0.6869    | 0.6018 | 0.6415 | 0.9476   |
| 0.4595        | 15.91 | 700  | 0.1866          | 0.7019    | 0.6460 | 0.6728 | 0.9514   |
| 0.4595        | 18.18 | 800  | 0.1712          | 0.7419    | 0.7124 | 0.7269 | 0.96     |
| 0.4595        | 20.45 | 900  | 0.1599          | 0.7647    | 0.7478 | 0.7562 | 0.9638   |
| 0.1593        | 22.73 | 1000 | 0.1568          | 0.7729    | 0.7832 | 0.7780 | 0.9686   |
| 0.1593        | 25.0  | 1100 | 0.1476          | 0.7686    | 0.7788 | 0.7736 | 0.9686   |
| 0.1593        | 27.27 | 1200 | 0.1395          | 0.7930    | 0.7965 | 0.7947 | 0.9714   |
| 0.1593        | 29.55 | 1300 | 0.1372          | 0.8       | 0.8142 | 0.8070 | 0.9733   |
| 0.1593        | 31.82 | 1400 | 0.1356          | 0.8035    | 0.8142 | 0.8088 | 0.9743   |
| 0.0987        | 34.09 | 1500 | 0.1326          | 0.7939    | 0.8009 | 0.7974 | 0.9714   |
| 0.0987        | 36.36 | 1600 | 0.1292          | 0.7939    | 0.8009 | 0.7974 | 0.9714   |
| 0.0987        | 38.64 | 1700 | 0.1300          | 0.8017    | 0.8230 | 0.8122 | 0.9743   |
| 0.0987        | 40.91 | 1800 | 0.1260          | 0.8062    | 0.8097 | 0.8079 | 0.9724   |
| 0.0987        | 43.18 | 1900 | 0.1244          | 0.8017    | 0.8230 | 0.8122 | 0.9743   |
| 0.0689        | 45.45 | 2000 | 0.1228          | 0.8150    | 0.8186 | 0.8168 | 0.9752   |
| 0.0689        | 47.73 | 2100 | 0.1230          | 0.8087    | 0.8230 | 0.8158 | 0.9752   |
| 0.0689        | 50.0  | 2200 | 0.1225          | 0.8114    | 0.8186 | 0.8150 | 0.9743   |
| 0.0689        | 52.27 | 2300 | 0.1226          | 0.8114    | 0.8186 | 0.8150 | 0.9743   |
| 0.0689        | 54.55 | 2400 | 0.1237          | 0.8174    | 0.8319 | 0.8246 | 0.9762   |
| 0.0545        | 56.82 | 2500 | 0.1234          | 0.8122    | 0.8230 | 0.8176 | 0.9752   |
| 0.0545        | 59.09 | 2600 | 0.1240          | 0.8122    | 0.8230 | 0.8176 | 0.9752   |
| 0.0545        | 61.36 | 2700 | 0.1242          | 0.8122    | 0.8230 | 0.8176 | 0.9752   |
| 0.0545        | 63.64 | 2800 | 0.1241          | 0.8122    | 0.8230 | 0.8176 | 0.9752   |
| 0.0545        | 65.91 | 2900 | 0.1253          | 0.8190    | 0.8407 | 0.8297 | 0.9771   |
| 0.0491        | 68.18 | 3000 | 0.1235          | 0.8114    | 0.8186 | 0.8150 | 0.9743   |
| 0.0491        | 70.45 | 3100 | 0.1236          | 0.8166    | 0.8274 | 0.8220 | 0.9752   |
| 0.0491        | 72.73 | 3200 | 0.1231          | 0.8166    | 0.8274 | 0.8220 | 0.9752   |
| 0.0491        | 75.0  | 3300 | 0.1239          | 0.8190    | 0.8407 | 0.8297 | 0.9771   |
| 0.0491        | 77.27 | 3400 | 0.1241          | 0.8190    | 0.8407 | 0.8297 | 0.9771   |
| 0.0442        | 79.55 | 3500 | 0.1240          | 0.8174    | 0.8319 | 0.8246 | 0.9762   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2