Noureddinesa
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: Output_LayoutLMv3_v2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# Output_LayoutLMv3_v2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1240
|
24 |
+
- Precision: 0.8174
|
25 |
+
- Recall: 0.8319
|
26 |
+
- F1: 0.8246
|
27 |
+
- Accuracy: 0.9762
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-07
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 3500
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 2.27 | 100 | 0.5286 | 0.0 | 0.0 | 0.0 | 0.8867 |
|
59 |
+
| No log | 4.55 | 200 | 0.4075 | 0.0 | 0.0 | 0.0 | 0.8867 |
|
60 |
+
| No log | 6.82 | 300 | 0.3231 | 0.2258 | 0.0310 | 0.0545 | 0.8933 |
|
61 |
+
| No log | 9.09 | 400 | 0.2612 | 0.5546 | 0.2920 | 0.3826 | 0.9210 |
|
62 |
+
| 0.4595 | 11.36 | 500 | 0.2246 | 0.5897 | 0.4071 | 0.4817 | 0.9295 |
|
63 |
+
| 0.4595 | 13.64 | 600 | 0.2004 | 0.6869 | 0.6018 | 0.6415 | 0.9476 |
|
64 |
+
| 0.4595 | 15.91 | 700 | 0.1866 | 0.7019 | 0.6460 | 0.6728 | 0.9514 |
|
65 |
+
| 0.4595 | 18.18 | 800 | 0.1712 | 0.7419 | 0.7124 | 0.7269 | 0.96 |
|
66 |
+
| 0.4595 | 20.45 | 900 | 0.1599 | 0.7647 | 0.7478 | 0.7562 | 0.9638 |
|
67 |
+
| 0.1593 | 22.73 | 1000 | 0.1568 | 0.7729 | 0.7832 | 0.7780 | 0.9686 |
|
68 |
+
| 0.1593 | 25.0 | 1100 | 0.1476 | 0.7686 | 0.7788 | 0.7736 | 0.9686 |
|
69 |
+
| 0.1593 | 27.27 | 1200 | 0.1395 | 0.7930 | 0.7965 | 0.7947 | 0.9714 |
|
70 |
+
| 0.1593 | 29.55 | 1300 | 0.1372 | 0.8 | 0.8142 | 0.8070 | 0.9733 |
|
71 |
+
| 0.1593 | 31.82 | 1400 | 0.1356 | 0.8035 | 0.8142 | 0.8088 | 0.9743 |
|
72 |
+
| 0.0987 | 34.09 | 1500 | 0.1326 | 0.7939 | 0.8009 | 0.7974 | 0.9714 |
|
73 |
+
| 0.0987 | 36.36 | 1600 | 0.1292 | 0.7939 | 0.8009 | 0.7974 | 0.9714 |
|
74 |
+
| 0.0987 | 38.64 | 1700 | 0.1300 | 0.8017 | 0.8230 | 0.8122 | 0.9743 |
|
75 |
+
| 0.0987 | 40.91 | 1800 | 0.1260 | 0.8062 | 0.8097 | 0.8079 | 0.9724 |
|
76 |
+
| 0.0987 | 43.18 | 1900 | 0.1244 | 0.8017 | 0.8230 | 0.8122 | 0.9743 |
|
77 |
+
| 0.0689 | 45.45 | 2000 | 0.1228 | 0.8150 | 0.8186 | 0.8168 | 0.9752 |
|
78 |
+
| 0.0689 | 47.73 | 2100 | 0.1230 | 0.8087 | 0.8230 | 0.8158 | 0.9752 |
|
79 |
+
| 0.0689 | 50.0 | 2200 | 0.1225 | 0.8114 | 0.8186 | 0.8150 | 0.9743 |
|
80 |
+
| 0.0689 | 52.27 | 2300 | 0.1226 | 0.8114 | 0.8186 | 0.8150 | 0.9743 |
|
81 |
+
| 0.0689 | 54.55 | 2400 | 0.1237 | 0.8174 | 0.8319 | 0.8246 | 0.9762 |
|
82 |
+
| 0.0545 | 56.82 | 2500 | 0.1234 | 0.8122 | 0.8230 | 0.8176 | 0.9752 |
|
83 |
+
| 0.0545 | 59.09 | 2600 | 0.1240 | 0.8122 | 0.8230 | 0.8176 | 0.9752 |
|
84 |
+
| 0.0545 | 61.36 | 2700 | 0.1242 | 0.8122 | 0.8230 | 0.8176 | 0.9752 |
|
85 |
+
| 0.0545 | 63.64 | 2800 | 0.1241 | 0.8122 | 0.8230 | 0.8176 | 0.9752 |
|
86 |
+
| 0.0545 | 65.91 | 2900 | 0.1253 | 0.8190 | 0.8407 | 0.8297 | 0.9771 |
|
87 |
+
| 0.0491 | 68.18 | 3000 | 0.1235 | 0.8114 | 0.8186 | 0.8150 | 0.9743 |
|
88 |
+
| 0.0491 | 70.45 | 3100 | 0.1236 | 0.8166 | 0.8274 | 0.8220 | 0.9752 |
|
89 |
+
| 0.0491 | 72.73 | 3200 | 0.1231 | 0.8166 | 0.8274 | 0.8220 | 0.9752 |
|
90 |
+
| 0.0491 | 75.0 | 3300 | 0.1239 | 0.8190 | 0.8407 | 0.8297 | 0.9771 |
|
91 |
+
| 0.0491 | 77.27 | 3400 | 0.1241 | 0.8190 | 0.8407 | 0.8297 | 0.9771 |
|
92 |
+
| 0.0442 | 79.55 | 3500 | 0.1240 | 0.8174 | 0.8319 | 0.8246 | 0.9762 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.38.2
|
98 |
+
- Pytorch 2.2.1+cu121
|
99 |
+
- Datasets 2.18.0
|
100 |
+
- Tokenizers 0.15.2
|