Vit-GPT2-UCA-UCF-02

This model is a fine-tuned version of NourFakih/Vit-GPT2-COCO2017Flickr-85k-09 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3246
  • Rouge1: 27.3344
  • Rouge2: 7.7352
  • Rougel: 22.9284
  • Rougelsum: 23.5349
  • Gen Len: 16.3847

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.3817 200 0.2663 26.7433 8.0771 22.7209 23.3892 14.8667
No log 0.7634 400 0.2620 28.6185 8.4345 24.4394 25.0197 15.8597
0.1365 1.1450 600 0.2796 25.8005 7.4354 21.8479 22.4492 15.8208
0.1365 1.5267 800 0.2918 26.9003 7.9138 22.5044 22.9753 16.9556
0.0755 1.9084 1000 0.2875 27.4792 7.0944 23.1894 23.7369 16.2569
0.0755 2.2901 1200 0.3187 27.6562 7.6185 23.0095 23.5045 16.8181
0.0755 2.6718 1400 0.3246 27.3344 7.7352 22.9284 23.5349 16.3847

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
239M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NourFakih/Vit-GPT2-UCA-UCF-02

Unable to build the model tree, the base model loops to the model itself. Learn more.