Vit-GPT2-UCA-UCF-01

This model is a fine-tuned version of NourFakih/Vit-GPT2-COCO2017Flickr-85k-09 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0808
  • Rouge1: 57.3757
  • Rouge2: 45.4285
  • Rougel: 54.5391
  • Rougelsum: 54.8713
  • Gen Len: 15.7384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.3604 200 0.1535 39.243 22.9624 35.1916 35.6871 15.2289
No log 0.7207 400 0.1014 42.1983 25.2146 38.1711 38.7239 15.9897
0.0777 1.0811 600 0.0907 46.7294 31.005 42.8959 43.3674 15.8967
0.0777 1.4414 800 0.0861 50.849 36.5323 47.6738 48.0898 16.2324
0.0642 1.8018 1000 0.0835 52.9082 39.1634 49.4618 50.0549 15.6093
0.0642 2.1622 1200 0.0837 55.0496 42.0646 52.1721 52.5506 16.1463
0.0642 2.5225 1400 0.0824 57.0383 44.9584 53.9845 54.3247 15.9880
0.039 2.8829 1600 0.0808 57.3757 45.4285 54.5391 54.8713 15.7384

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
239M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NourFakih/Vit-GPT2-UCA-UCF-01

Unable to build the model tree, the base model loops to the model itself. Learn more.