metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-student_kaggle
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
resnet-50-finetuned-student_kaggle
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0012
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7142 | 1.0 | 47 | 0.6418 | 0.6101 |
0.3351 | 2.0 | 94 | 0.2597 | 0.8947 |
0.2574 | 3.0 | 141 | 0.1046 | 0.9780 |
0.1479 | 4.0 | 188 | 0.0616 | 0.9874 |
0.1284 | 5.0 | 235 | 0.0232 | 0.9953 |
0.077 | 6.0 | 282 | 0.0150 | 0.9953 |
0.103 | 7.0 | 329 | 0.0105 | 0.9984 |
0.0922 | 8.0 | 376 | 0.0094 | 0.9984 |
0.08 | 9.0 | 423 | 0.0056 | 1.0 |
0.0492 | 10.0 | 470 | 0.0045 | 1.0 |
0.0574 | 11.0 | 517 | 0.0043 | 1.0 |
0.0382 | 12.0 | 564 | 0.0023 | 1.0 |
0.0666 | 13.0 | 611 | 0.0022 | 1.0 |
0.0477 | 14.0 | 658 | 0.0022 | 1.0 |
0.0614 | 15.0 | 705 | 0.0023 | 1.0 |
0.0282 | 16.0 | 752 | 0.0014 | 1.0 |
0.0659 | 17.0 | 799 | 0.0016 | 1.0 |
0.0586 | 18.0 | 846 | 0.0010 | 1.0 |
0.0557 | 19.0 | 893 | 0.0013 | 1.0 |
0.07 | 20.0 | 940 | 0.0012 | 1.0 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1