NiharGupte's picture
Model save
cec259b verified
|
raw
history blame
2.24 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-student_kaggle
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.1949685534591195

resnet-50-finetuned-student_kaggle

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2966756414651073587838976.0000
  • Accuracy: 0.1950

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
2231665653697395759775744.0000 1.0 47 2703493994833503873662976.0000 0.1950
2448978214010634004070400.0000 2.0 94 2805605946653523096633344.0000 0.1950
2364532939574307232677888.0000 3.0 141 2845180265529529270796288.0000 0.1950
2331862372313962142236672.0000 4.0 188 3271042952136692586250240.0000 0.1950
2584276319587858445762560.0000 5.0 235 2966756414651073587838976.0000 0.1950

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1