Llama3-Athene-RM-70B
We introduce Llama3-Athene-RM-70B, an open-weights reward model based off Llama-3-70B-Instruct.
- Developed by: The Nexusflow Team (Evan Frick*, Peter Jin*, Tianle Li*, Karthik Ganesan, Jian Zhang, Jiantao Jiao and Banghua Zhu).
- Model type: Reward Model
- Finetuned from model: Llama-3-70B-Instruct.
- License: Nexusflow Research License
- Blog: https://nexusflow.ai/blogs/athene
Usage
from transformers import LlamaModel, LlamaPreTrainedModel, TextClassificationPipeline
from torch import nn
import torch
from typing import Dict
class AtheneForSequenceClassification(LlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = LlamaModel(config)
self.v_head = nn.Linear(config.hidden_size, 1, bias=False)
self.CLS_ID = 128003
# Initialize weights and apply final processing
self.post_init()
def get_device(self):
return self.model.device
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
position_ids=None,
):
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_hidden_states=True,
)
hidden_states = transformer_outputs.hidden_states[-1]
scores = []
rewards = self.v_head(hidden_states).squeeze(-1)
bs = int(input_ids.shape[0])
for i in range(bs):
c_inds = (input_ids[i] == self.CLS_ID).nonzero()
c_ind = c_inds[-1].item()
scores.append(rewards[i, c_ind])
scores = torch.stack(scores)
return {"scores": scores}
# Make a pipeline to handle pre and post-processing
class AtheneRewardPipeline(TextClassificationPipeline):
def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, torch.Tensor]:
return_tensors = self.framework
formatted = self.tokenizer.apply_chat_template(inputs, tokenize=False)
formatted = formatted + self.tokenizer.cls_token
return self.tokenizer(
formatted,
return_tensors=return_tensors,
max_length=4096,
padding="longest",
truncation=True,
)
def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True):
return model_outputs["scores"].cpu().float().item()
# Initialize the model
model = AtheneForSequenceClassification.from_pretrained("Nexusflow/Athene-RM-70B", torch_dtype=bfloat16)
tokenizer = AutoTokenizer.from_pretrained("Nexusflow/Athene-RM-70B")
# Initialize the pipeline
pipe = pipeline(
task="text-classification",
model=self.model,
tokenizer=self.tokenizer,
pipeline_class=AtheneRewardPipeline,
device_map="auto",
)
messages = [
{
"role": 'user',
"content": "What is an Athene Noctura? Explain one sentence."
},
{
"role": "assistant",
"content": "The Athene noctua, also known as the little owl, is a small, nocturnal owl species native to Europe, Asia, and North Africa, characterized by its distinctive facial disk and piercing yellow eyes."
}
]
print(pipe([messages])) # Print the reward!
Citation
@misc{Athene2024,
title = {Athene-70B: Redefining the Boundaries of Post-Training for Open Models},
url = {https://nexusflow.ai/blogs/athene},
author = {Frick, Evan and Jin, Peter and Li, Tianle and Ganesan, Karthik and Zhang, Jian and Jiao, Jiantao and Zhu, Banghua},
month = {July},
year = {2024}
}
- Downloads last month
- 164
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Nexusflow/Athene-RM-70B
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct