Text Generation
Transformers
code
Eval Results
Inference Endpoints
File size: 11,370 Bytes
e41023f
66a5b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41023f
66a5b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
  example_title: Hello world
  group: Python
license: bigcode-openrail-m
datasets:
- bigcode/the-stack-dedup
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: StarCoderBase
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.304
      verified: false
  - task:
      type: text-generation
    dataset:
      type: mbpp
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.49
      verified: false
  - task:
      type: text-generation
    dataset:
      type: ds1000
      name: DS-1000 (Overall Completion)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.238
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3056
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C#)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2056
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (D)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1001
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Go)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2147
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2853
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Julia)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2109
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.317
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Lua)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2661
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2675
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Perl)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1632
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3035
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (R)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1018
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Ruby)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1725
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Racket)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1177
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2446
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Scala)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.2879
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Bash)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1102
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Swift)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.1674
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (TypeScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.3215
      verified: false
extra_gated_prompt: >-
  ## Model License Agreement

  Please read the BigCode [OpenRAIL-M
  license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
  agreement before accepting it.
    
extra_gated_fields:
  I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox
---

# starcoderbase-GGML

This is GGML format quantised 4bit, 5bit and 8bit models of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase).
This repo is the result of quantising to 4bit, 5bit and 8bit GGML for CPU inference using [ggml](https://github.com/ggerganov/ggml/tree/master/examples/starcoder).

# Original model card

![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/StarCoderBanner.png)

Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground).

##  Table of Contents

1. [Model Summary](##model-summary)
2. [Use](##use)
3. [Limitations](##limitations)
4. [Training](##training)
5. [License](##license)
6. [Citation](##citation)

## Model Summary

The StarCoderBase models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135),  and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens. 

- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
- **Paper:** [💫StarCoder: May the source be with you!](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view)
- **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
- **Languages:** 80+ Programming languages


## Use

### Intended use

The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant.

**Feel free to share your generations in the Community tab!**

### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigcode/starcoderbase"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)

inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

### Fill-in-the-middle
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:

```python
input_text = "<fim_prefix>def print_hello_world():\n    <fim_suffix>\n    print('Hello world!')<fim_middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

### Attribution & Other Requirements

The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.

# Limitations

The model has been trained on source code from 80+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations. 

# Training

## Model

- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 250k
- **Pretraining tokens:** 1 trillion
- **Precision:** bfloat16

## Hardware

- **GPUs:** 512 Tesla A100
- **Training time:** 24 days

## Software

- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)

# License
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
# Citation
```
@article{li2023starcoder,
      title={StarCoder: may the source be with you!}, 
      author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
      year={2023},
      eprint={2305.06161},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```