Further instruct Tuning stanford alpaca based on tloen/alpaca-lora-7b on Hong Kong 2023 Consumption Voucher Scheme Frequently Asked Questions

How to use it


from transformers import LlamaForCausalLM, LlamaTokenizer,GenerationConfig
from peft import PeftModel


device_map = "auto"

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = LlamaForCausalLM.from_pretrained(
    "decapoda-research/llama-7b-hf",
    load_in_8bit=True,
    device_map="auto",
)

### load model after fine tuned on alpaca datasets
model = PeftModel.from_pretrained(model, "Nelsonlin0321/alpaca-lora-7b-tuned-on-hk-cvs-fqa")

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
tokenizer.pad_token_id = 0


def generate_prompt_eval(instruction):
    template =  f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
    return template

eval_generation_config = GenerationConfig(
    temperature=0.1,
    top_p=0.75,
    num_beams=4,
)


def generate_answer(instruction):
    prompt = generate_prompt_eval(instruction)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].cuda()
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=eval_generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256
    )
    for s in generation_output.sequences:
        output = tokenizer.decode(s)
        # print(output)
        print("Response:", output.split("### Response:")[1].strip())


question = "Who are eligible to be disbursed with the first-instalment voucher of $1,500 on 16 April?"

generate_answer(question)
>> Response: All eligible people who have successfully registered under 2022 CVS and met the relevant eligibility criteria will be disbursed with the first-instalment voucher of $1,500 on 16 April.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.