File size: 15,214 Bytes
3cd73eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import json
import gc
import logging
import torch
import pickle
from torch.utils.data import Dataset
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    TrainerCallback,
    DataCollatorForSeq2Seq,
)

# CONFIGURATION
MAX_ITEMS = None
MAX_LENGTH = 256
PER_DEVICE_BATCH = 1 
GRAD_ACC_STEPS = 16  # Increased due to higher MAX_LENGTH
LEARNING_RATE = 5e-5 
NUM_TRAIN_EPOCHS = 1
WARMUP_STEPS = 200
FP16_TRAINING = False # fix windows
OPTIMIZER_CHOICE = "adamw_8bit" 
MAX_GRAD_NORM_CLIP = 0.0 
GRADIENT_CHECKPOINTING = True 
LOGGING_STEPS = 50
SAVE_STEPS = 1000
EVAL_STEPS = 500
SAVE_TOTAL_LIMIT = 20  # each 7GB
FIXED_PROMPT_FOR_GENERATION = "Create stable diffusion metadata based on the given english description. a futuristic city"

logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(levelname)s — %(name)s — %(message)s")
log = logging.getLogger(__name__)

class SDPromptDataset(Dataset):
    def __init__(self, raw_data_list, tokenizer, max_length, dataset_type="train", cache_dir="cache"):
        self.raw_data = raw_data_list
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.dataset_type = dataset_type
        
        os.makedirs(cache_dir, exist_ok=True)
        cache_file = os.path.join(cache_dir, f"{dataset_type}_{len(raw_data_list)}_{max_length}.pkl")
        
        if os.path.exists(cache_file):
            log.info(f"Loading cached {dataset_type} dataset from {cache_file}")
            with open(cache_file, 'rb') as f:
                self.examples = pickle.load(f)
            log.info(f"Loaded {len(self.examples)} cached examples for {dataset_type}")
        else:
            log.info(f"Tokenizing {len(raw_data_list)} samples for {dataset_type} with {type(tokenizer).__name__}...")
            self.examples = []
            
            for i, item in enumerate(raw_data_list):
                if i > 0 and (i % 5000 == 0 or i == len(raw_data_list) - 1):
                    log.info(f"Tokenized {i+1} / {len(raw_data_list)} samples for {dataset_type}")

                instruction = item.get("instruction", "")
                output = item.get("output", "")

                input_encoding = tokenizer(
                    instruction, max_length=max_length, padding="max_length",
                    truncation=True, return_tensors="pt",
                )
                
                if self.dataset_type == "train" or (self.dataset_type == "eval" and output):
                    target_encoding = tokenizer(
                        output, max_length=max_length, padding="max_length",
                        truncation=True, return_tensors="pt",
                    )
                    labels = target_encoding["input_ids"].squeeze()
                    labels[labels == tokenizer.pad_token_id] = -100
                else: 
                    labels = None 

                example_data = {
                    "input_ids": input_encoding["input_ids"].squeeze(),
                    "attention_mask": input_encoding["attention_mask"].squeeze(),
                }
                if labels is not None:
                    example_data["labels"] = labels
                
                self.examples.append(example_data)
            
            log.info(f"Tokenization complete for {dataset_type}. Saving cache to {cache_file}")
            with open(cache_file, 'wb') as f:
                pickle.dump(self.examples, f)
            log.info(f"Cache saved successfully")

    def __len__(self): 
        return len(self.examples)
    
    def __getitem__(self, idx): 
        return self.examples[idx]
    
    def get_raw_example(self, idx): 
        return self.raw_data[idx]

def load_and_split_json_data(data_path, max_items_from_config=None):
    log.info(f"Loading data from {data_path}...")
    if not os.path.exists(data_path):
        log.error(f"Data file not found: {data_path}")
        raise FileNotFoundError(f"Data file not found: {data_path}")
    
    with open(data_path, "r", encoding="utf-8") as f: 
        all_data = json.load(f)
    log.info(f"Successfully loaded {len(all_data)} total items from JSON.")
    
    if max_items_from_config is not None and max_items_from_config > 0: 
        num_to_take = min(max_items_from_config, len(all_data))
        log.info(f"Keeping the first {num_to_take} samples as per MAX_ITEMS config.")
        all_data = all_data[:num_to_take]
    else:
        log.info("Using the full dataset.")
            
    if not all_data: 
        log.error("No data loaded or remaining.")
        raise ValueError("No data to process.")
    
    if len(all_data) < 20:
        split_idx = max(1, int(0.5 * len(all_data)))
        log.warning(f"Dataset very small ({len(all_data)} items). Adjusting split.")
    else:
        split_idx = int(0.9 * len(all_data))
        split_idx = max(1, split_idx)

    train_data = all_data[:split_idx]
    val_data = all_data[split_idx:]
    
    if not val_data and train_data:
        val_data = [train_data[-1]] 
        log.warning("Validation set was empty after split, using one sample from training data for validation.")
        if len(train_data) > 1:
            train_data = train_data[:-1]

    val_data = val_data[:min(len(val_data), 2000)] if val_data else None 

    if not train_data: 
        log.error("Training data empty.")
        raise ValueError("Training data empty.")
    
    log.info(f"Train samples: {len(train_data)}, Validation samples: {len(val_data) if val_data else 0}")
    return train_data, val_data

def find_latest_checkpoint(output_dir):
    if not os.path.isdir(output_dir):
        return None
    
    checkpoints = [d for d in os.listdir(output_dir) if d.startswith("checkpoint-") and os.path.isdir(os.path.join(output_dir, d))]
    if not checkpoints:
        return None
    
    checkpoints.sort(key=lambda x: int(x.split('-')[-1]))
    latest_checkpoint = os.path.join(output_dir, checkpoints[-1])
    
    if os.path.exists(os.path.join(latest_checkpoint, "pytorch_model.bin")) or os.path.exists(os.path.join(latest_checkpoint, "model.safetensors")):
        return latest_checkpoint
    
    return None

def clear_cuda_cache():
    log.info("Clearing CUDA cache...")
    gc.collect()
    if torch.cuda.is_available(): 
        torch.cuda.empty_cache()

def generate_and_log_fixed_sample(model, tokenizer, prompt_text, device, log_prefix="Sample"):
    log.info(f"\n--- {log_prefix} Generation ---")
    log.info(f"Input Prompt: {prompt_text}")
    model.eval() 
    inputs = tokenizer(prompt_text, return_tensors="pt", max_length=MAX_LENGTH, truncation=True)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = model.generate(
            **inputs, max_length=MAX_LENGTH + 50,
            num_beams=5, early_stopping=True, no_repeat_ngram_size=3,
            temperature=0.7, top_k=50, top_p=0.95
        )
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    log.info(f"Generated Output: {generated_text}")
    log.info(f"--- End {log_prefix} Generation ---\n")

class ShowFixedEvalSampleCallback(TrainerCallback):
    def __init__(self, tokenizer, prompt_text):
        self.tokenizer = tokenizer
        self.prompt_text = prompt_text
        
    def on_evaluate(self, args, state, control, model=None, **kwargs):
        if model is None: 
            return
        device = next(model.parameters()).device
        generate_and_log_fixed_sample(model, self.tokenizer, self.prompt_text, device, log_prefix="Evaluation Callback Sample")
        model.train()

def Train(model_id: str, output_dir: str, data_path: str):
    os.makedirs(output_dir, exist_ok=True)
    clear_cuda_cache()
    
    # Check for existing checkpoint to resume
    resume_from_checkpoint = find_latest_checkpoint(output_dir)
    if resume_from_checkpoint:
        log.info(f"Found checkpoint to resume from: {resume_from_checkpoint}")
    else:
        log.info("No existing checkpoint found, starting fresh training")
    
    log.info(f"Attempting to load MyT5Tokenizer for {model_id} (trust_remote_code=True).")
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
        log.info(f"Successfully loaded tokenizer: {type(tokenizer).__name__}")
    except Exception as e:
        log.error(f"Failed to load tokenizer for {model_id} (trust_remote_code=True): {e}")
        return

    train_raw_data, eval_raw_data = load_and_split_json_data(data_path, max_items_from_config=MAX_ITEMS)
    if not train_raw_data: 
        return

    train_dataset = SDPromptDataset(train_raw_data, tokenizer, MAX_LENGTH, dataset_type="train")
    eval_dataset = SDPromptDataset(eval_raw_data, tokenizer, MAX_LENGTH, dataset_type="eval") if eval_raw_data else None

    log.info(f"Loading model: {model_id}")
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16 if FP16_TRAINING else torch.float32,
        device_map="auto", 
        low_cpu_mem_usage=True,
    )
    
    if GRADIENT_CHECKPOINTING: 
        model.gradient_checkpointing_enable()
        log.info("Grad-ckpt enabled.")
    
    if OPTIMIZER_CHOICE == "adamw_8bit":
        try:
            import bitsandbytes
            log.info(f"bitsandbytes version: {bitsandbytes.__version__} imported for adamw_8bit.")
        except ImportError:
            log.error("bitsandbytes not installed, required for optim='adamw_8bit'. Install: pip install bitsandbytes")
            return
            
    training_args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=PER_DEVICE_BATCH,
        per_device_eval_batch_size=PER_DEVICE_BATCH * 2,
        gradient_accumulation_steps=GRAD_ACC_STEPS,
        learning_rate=LEARNING_RATE, 
        num_train_epochs=NUM_TRAIN_EPOCHS, 
        warmup_steps=WARMUP_STEPS,
        logging_steps=LOGGING_STEPS, 
        save_strategy="steps", 
        save_steps=SAVE_STEPS,
        eval_strategy="steps" if eval_dataset else "no",
        eval_steps=EVAL_STEPS if eval_dataset else None,
        save_total_limit=SAVE_TOTAL_LIMIT, 
        load_best_model_at_end=True if eval_dataset else False,
        fp16=FP16_TRAINING, 
        optim=OPTIMIZER_CHOICE, 
        max_grad_norm=MAX_GRAD_NORM_CLIP,
        gradient_checkpointing=GRADIENT_CHECKPOINTING, 
        group_by_length=True,
        lr_scheduler_type="cosine", 
        weight_decay=0.01, 
        report_to="none",
    )
    
    fixed_sample_callback = ShowFixedEvalSampleCallback(tokenizer=tokenizer, prompt_text=FIXED_PROMPT_FOR_GENERATION)
    callbacks_to_use = [fixed_sample_callback] if eval_dataset else []

    data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, padding="longest")
    trainer = Trainer( 
        model=model, 
        args=training_args, 
        train_dataset=train_dataset,
        eval_dataset=eval_dataset, 
        data_collator=data_collator, 
        tokenizer=tokenizer,
        callbacks=callbacks_to_use 
    )
    
    log.info(f"Starting training with FP16_TRAINING={FP16_TRAINING}, optim='{OPTIMIZER_CHOICE}', LR={LEARNING_RATE}, GradClip={MAX_GRAD_NORM_CLIP}...")
    try:
        trainer.train(resume_from_checkpoint=resume_from_checkpoint)
    except Exception as e:
        log.exception(f"Unhandled error during trainer.train(): {e}")
        return
        
    log.info("Training completed.")
    try:
        final_model_path = os.path.join(output_dir, "final_model_after_train") 
        if not os.path.exists(final_model_path): 
             trainer.save_model(final_model_path)
             log.info(f"Final model state explicitly saved to {final_model_path}")
        else:
            log.info(f"Best model was likely saved by load_best_model_at_end to a checkpoint within {output_dir}")
    except Exception as e: 
        log.exception(f"Error saving final explicit model: {e}")
    log.info("Train function finished.")

def Inference(base_model_id_for_tokenizer: str, trained_model_output_dir: str):
    log.info(f"\n--- Starting Inference ---")
    
    path_to_load_model_from = trained_model_output_dir 
    potential_final_model = os.path.join(trained_model_output_dir, "final_model_after_train")
    
    if os.path.exists(potential_final_model) and (os.path.exists(os.path.join(potential_final_model, "pytorch_model.bin")) or os.path.exists(os.path.join(potential_final_model, "model.safetensors"))):
        path_to_load_model_from = potential_final_model
        log.info(f"Found 'final_model_after_train' at: {path_to_load_model_from}")
    else:
        latest_checkpoint = find_latest_checkpoint(trained_model_output_dir)
        if latest_checkpoint:
            path_to_load_model_from = latest_checkpoint
            log.info(f"Found latest checkpoint: {path_to_load_model_from}")
        elif not (os.path.exists(os.path.join(path_to_load_model_from, "pytorch_model.bin")) or os.path.exists(os.path.join(path_to_load_model_from, "model.safetensors"))):
            log.error(f"No valid model found in {trained_model_output_dir} or its subdirectories. Cannot run inference.")
            return

    log.info(f"Attempting to load fine-tuned model from: {path_to_load_model_from}")

    try:
        model = AutoModelForSeq2SeqLM.from_pretrained(path_to_load_model_from, device_map="auto")
        try:
            tokenizer = AutoTokenizer.from_pretrained(path_to_load_model_from, trust_remote_code=True)
        except Exception: 
            log.warning(f"Could not load tokenizer from {path_to_load_model_from}, trying base {base_model_id_for_tokenizer}")
            tokenizer = AutoTokenizer.from_pretrained(base_model_id_for_tokenizer, trust_remote_code=True)
        log.info(f"Successfully loaded model and tokenizer for inference. Model is on: {model.device}")
    except Exception as e:
        log.error(f"Failed to load model or tokenizer for inference: {e}")
        return

    device = next(model.parameters()).device
    generate_and_log_fixed_sample(model, tokenizer, FIXED_PROMPT_FOR_GENERATION, device, log_prefix="Final Inference")
    log.info(f"--- Inference Demo Finished ---")

def main():
    Train('Tomlim/myt5-large', 'trained_model', 'DiscordPromptSD.json')
    Inference('Tomlim/myt5-large', 'trained_model')

if __name__ == "__main__":
    main()

# - SFW Cyberpunk City: `Nikon Z9 200mm f_8 ISO 160, (giant rifle structure), flawless ornate architecture, cyberpunk, neon lights, busy street, realistic, ray tracing, hasselblad`
# - **SFW Fantasy Dragon Rider: `masterpiece, best quality, cinematic lighting, 1girl, solo, <lora:add_detail:0.55>`
# - **NSFW Anime Succubus: `masterpiece, best quality, highly detailed background, intricate, 1girl, (full-face blush, aroused:1.3), long hair, medium breasts, nipples`