File size: 15,214 Bytes
3cd73eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os
import json
import gc
import logging
import torch
import pickle
from torch.utils.data import Dataset
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
TrainingArguments,
Trainer,
TrainerCallback,
DataCollatorForSeq2Seq,
)
# CONFIGURATION
MAX_ITEMS = None
MAX_LENGTH = 256
PER_DEVICE_BATCH = 1
GRAD_ACC_STEPS = 16 # Increased due to higher MAX_LENGTH
LEARNING_RATE = 5e-5
NUM_TRAIN_EPOCHS = 1
WARMUP_STEPS = 200
FP16_TRAINING = False # fix windows
OPTIMIZER_CHOICE = "adamw_8bit"
MAX_GRAD_NORM_CLIP = 0.0
GRADIENT_CHECKPOINTING = True
LOGGING_STEPS = 50
SAVE_STEPS = 1000
EVAL_STEPS = 500
SAVE_TOTAL_LIMIT = 20 # each 7GB
FIXED_PROMPT_FOR_GENERATION = "Create stable diffusion metadata based on the given english description. a futuristic city"
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(levelname)s — %(name)s — %(message)s")
log = logging.getLogger(__name__)
class SDPromptDataset(Dataset):
def __init__(self, raw_data_list, tokenizer, max_length, dataset_type="train", cache_dir="cache"):
self.raw_data = raw_data_list
self.tokenizer = tokenizer
self.max_length = max_length
self.dataset_type = dataset_type
os.makedirs(cache_dir, exist_ok=True)
cache_file = os.path.join(cache_dir, f"{dataset_type}_{len(raw_data_list)}_{max_length}.pkl")
if os.path.exists(cache_file):
log.info(f"Loading cached {dataset_type} dataset from {cache_file}")
with open(cache_file, 'rb') as f:
self.examples = pickle.load(f)
log.info(f"Loaded {len(self.examples)} cached examples for {dataset_type}")
else:
log.info(f"Tokenizing {len(raw_data_list)} samples for {dataset_type} with {type(tokenizer).__name__}...")
self.examples = []
for i, item in enumerate(raw_data_list):
if i > 0 and (i % 5000 == 0 or i == len(raw_data_list) - 1):
log.info(f"Tokenized {i+1} / {len(raw_data_list)} samples for {dataset_type}")
instruction = item.get("instruction", "")
output = item.get("output", "")
input_encoding = tokenizer(
instruction, max_length=max_length, padding="max_length",
truncation=True, return_tensors="pt",
)
if self.dataset_type == "train" or (self.dataset_type == "eval" and output):
target_encoding = tokenizer(
output, max_length=max_length, padding="max_length",
truncation=True, return_tensors="pt",
)
labels = target_encoding["input_ids"].squeeze()
labels[labels == tokenizer.pad_token_id] = -100
else:
labels = None
example_data = {
"input_ids": input_encoding["input_ids"].squeeze(),
"attention_mask": input_encoding["attention_mask"].squeeze(),
}
if labels is not None:
example_data["labels"] = labels
self.examples.append(example_data)
log.info(f"Tokenization complete for {dataset_type}. Saving cache to {cache_file}")
with open(cache_file, 'wb') as f:
pickle.dump(self.examples, f)
log.info(f"Cache saved successfully")
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
return self.examples[idx]
def get_raw_example(self, idx):
return self.raw_data[idx]
def load_and_split_json_data(data_path, max_items_from_config=None):
log.info(f"Loading data from {data_path}...")
if not os.path.exists(data_path):
log.error(f"Data file not found: {data_path}")
raise FileNotFoundError(f"Data file not found: {data_path}")
with open(data_path, "r", encoding="utf-8") as f:
all_data = json.load(f)
log.info(f"Successfully loaded {len(all_data)} total items from JSON.")
if max_items_from_config is not None and max_items_from_config > 0:
num_to_take = min(max_items_from_config, len(all_data))
log.info(f"Keeping the first {num_to_take} samples as per MAX_ITEMS config.")
all_data = all_data[:num_to_take]
else:
log.info("Using the full dataset.")
if not all_data:
log.error("No data loaded or remaining.")
raise ValueError("No data to process.")
if len(all_data) < 20:
split_idx = max(1, int(0.5 * len(all_data)))
log.warning(f"Dataset very small ({len(all_data)} items). Adjusting split.")
else:
split_idx = int(0.9 * len(all_data))
split_idx = max(1, split_idx)
train_data = all_data[:split_idx]
val_data = all_data[split_idx:]
if not val_data and train_data:
val_data = [train_data[-1]]
log.warning("Validation set was empty after split, using one sample from training data for validation.")
if len(train_data) > 1:
train_data = train_data[:-1]
val_data = val_data[:min(len(val_data), 2000)] if val_data else None
if not train_data:
log.error("Training data empty.")
raise ValueError("Training data empty.")
log.info(f"Train samples: {len(train_data)}, Validation samples: {len(val_data) if val_data else 0}")
return train_data, val_data
def find_latest_checkpoint(output_dir):
if not os.path.isdir(output_dir):
return None
checkpoints = [d for d in os.listdir(output_dir) if d.startswith("checkpoint-") and os.path.isdir(os.path.join(output_dir, d))]
if not checkpoints:
return None
checkpoints.sort(key=lambda x: int(x.split('-')[-1]))
latest_checkpoint = os.path.join(output_dir, checkpoints[-1])
if os.path.exists(os.path.join(latest_checkpoint, "pytorch_model.bin")) or os.path.exists(os.path.join(latest_checkpoint, "model.safetensors")):
return latest_checkpoint
return None
def clear_cuda_cache():
log.info("Clearing CUDA cache...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def generate_and_log_fixed_sample(model, tokenizer, prompt_text, device, log_prefix="Sample"):
log.info(f"\n--- {log_prefix} Generation ---")
log.info(f"Input Prompt: {prompt_text}")
model.eval()
inputs = tokenizer(prompt_text, return_tensors="pt", max_length=MAX_LENGTH, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs, max_length=MAX_LENGTH + 50,
num_beams=5, early_stopping=True, no_repeat_ngram_size=3,
temperature=0.7, top_k=50, top_p=0.95
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
log.info(f"Generated Output: {generated_text}")
log.info(f"--- End {log_prefix} Generation ---\n")
class ShowFixedEvalSampleCallback(TrainerCallback):
def __init__(self, tokenizer, prompt_text):
self.tokenizer = tokenizer
self.prompt_text = prompt_text
def on_evaluate(self, args, state, control, model=None, **kwargs):
if model is None:
return
device = next(model.parameters()).device
generate_and_log_fixed_sample(model, self.tokenizer, self.prompt_text, device, log_prefix="Evaluation Callback Sample")
model.train()
def Train(model_id: str, output_dir: str, data_path: str):
os.makedirs(output_dir, exist_ok=True)
clear_cuda_cache()
# Check for existing checkpoint to resume
resume_from_checkpoint = find_latest_checkpoint(output_dir)
if resume_from_checkpoint:
log.info(f"Found checkpoint to resume from: {resume_from_checkpoint}")
else:
log.info("No existing checkpoint found, starting fresh training")
log.info(f"Attempting to load MyT5Tokenizer for {model_id} (trust_remote_code=True).")
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
log.info(f"Successfully loaded tokenizer: {type(tokenizer).__name__}")
except Exception as e:
log.error(f"Failed to load tokenizer for {model_id} (trust_remote_code=True): {e}")
return
train_raw_data, eval_raw_data = load_and_split_json_data(data_path, max_items_from_config=MAX_ITEMS)
if not train_raw_data:
return
train_dataset = SDPromptDataset(train_raw_data, tokenizer, MAX_LENGTH, dataset_type="train")
eval_dataset = SDPromptDataset(eval_raw_data, tokenizer, MAX_LENGTH, dataset_type="eval") if eval_raw_data else None
log.info(f"Loading model: {model_id}")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if FP16_TRAINING else torch.float32,
device_map="auto",
low_cpu_mem_usage=True,
)
if GRADIENT_CHECKPOINTING:
model.gradient_checkpointing_enable()
log.info("Grad-ckpt enabled.")
if OPTIMIZER_CHOICE == "adamw_8bit":
try:
import bitsandbytes
log.info(f"bitsandbytes version: {bitsandbytes.__version__} imported for adamw_8bit.")
except ImportError:
log.error("bitsandbytes not installed, required for optim='adamw_8bit'. Install: pip install bitsandbytes")
return
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=PER_DEVICE_BATCH,
per_device_eval_batch_size=PER_DEVICE_BATCH * 2,
gradient_accumulation_steps=GRAD_ACC_STEPS,
learning_rate=LEARNING_RATE,
num_train_epochs=NUM_TRAIN_EPOCHS,
warmup_steps=WARMUP_STEPS,
logging_steps=LOGGING_STEPS,
save_strategy="steps",
save_steps=SAVE_STEPS,
eval_strategy="steps" if eval_dataset else "no",
eval_steps=EVAL_STEPS if eval_dataset else None,
save_total_limit=SAVE_TOTAL_LIMIT,
load_best_model_at_end=True if eval_dataset else False,
fp16=FP16_TRAINING,
optim=OPTIMIZER_CHOICE,
max_grad_norm=MAX_GRAD_NORM_CLIP,
gradient_checkpointing=GRADIENT_CHECKPOINTING,
group_by_length=True,
lr_scheduler_type="cosine",
weight_decay=0.01,
report_to="none",
)
fixed_sample_callback = ShowFixedEvalSampleCallback(tokenizer=tokenizer, prompt_text=FIXED_PROMPT_FOR_GENERATION)
callbacks_to_use = [fixed_sample_callback] if eval_dataset else []
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, padding="longest")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
callbacks=callbacks_to_use
)
log.info(f"Starting training with FP16_TRAINING={FP16_TRAINING}, optim='{OPTIMIZER_CHOICE}', LR={LEARNING_RATE}, GradClip={MAX_GRAD_NORM_CLIP}...")
try:
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
except Exception as e:
log.exception(f"Unhandled error during trainer.train(): {e}")
return
log.info("Training completed.")
try:
final_model_path = os.path.join(output_dir, "final_model_after_train")
if not os.path.exists(final_model_path):
trainer.save_model(final_model_path)
log.info(f"Final model state explicitly saved to {final_model_path}")
else:
log.info(f"Best model was likely saved by load_best_model_at_end to a checkpoint within {output_dir}")
except Exception as e:
log.exception(f"Error saving final explicit model: {e}")
log.info("Train function finished.")
def Inference(base_model_id_for_tokenizer: str, trained_model_output_dir: str):
log.info(f"\n--- Starting Inference ---")
path_to_load_model_from = trained_model_output_dir
potential_final_model = os.path.join(trained_model_output_dir, "final_model_after_train")
if os.path.exists(potential_final_model) and (os.path.exists(os.path.join(potential_final_model, "pytorch_model.bin")) or os.path.exists(os.path.join(potential_final_model, "model.safetensors"))):
path_to_load_model_from = potential_final_model
log.info(f"Found 'final_model_after_train' at: {path_to_load_model_from}")
else:
latest_checkpoint = find_latest_checkpoint(trained_model_output_dir)
if latest_checkpoint:
path_to_load_model_from = latest_checkpoint
log.info(f"Found latest checkpoint: {path_to_load_model_from}")
elif not (os.path.exists(os.path.join(path_to_load_model_from, "pytorch_model.bin")) or os.path.exists(os.path.join(path_to_load_model_from, "model.safetensors"))):
log.error(f"No valid model found in {trained_model_output_dir} or its subdirectories. Cannot run inference.")
return
log.info(f"Attempting to load fine-tuned model from: {path_to_load_model_from}")
try:
model = AutoModelForSeq2SeqLM.from_pretrained(path_to_load_model_from, device_map="auto")
try:
tokenizer = AutoTokenizer.from_pretrained(path_to_load_model_from, trust_remote_code=True)
except Exception:
log.warning(f"Could not load tokenizer from {path_to_load_model_from}, trying base {base_model_id_for_tokenizer}")
tokenizer = AutoTokenizer.from_pretrained(base_model_id_for_tokenizer, trust_remote_code=True)
log.info(f"Successfully loaded model and tokenizer for inference. Model is on: {model.device}")
except Exception as e:
log.error(f"Failed to load model or tokenizer for inference: {e}")
return
device = next(model.parameters()).device
generate_and_log_fixed_sample(model, tokenizer, FIXED_PROMPT_FOR_GENERATION, device, log_prefix="Final Inference")
log.info(f"--- Inference Demo Finished ---")
def main():
Train('Tomlim/myt5-large', 'trained_model', 'DiscordPromptSD.json')
Inference('Tomlim/myt5-large', 'trained_model')
if __name__ == "__main__":
main()
# - SFW Cyberpunk City: `Nikon Z9 200mm f_8 ISO 160, (giant rifle structure), flawless ornate architecture, cyberpunk, neon lights, busy street, realistic, ray tracing, hasselblad`
# - **SFW Fantasy Dragon Rider: `masterpiece, best quality, cinematic lighting, 1girl, solo, <lora:add_detail:0.55>`
# - **NSFW Anime Succubus: `masterpiece, best quality, highly detailed background, intricate, 1girl, (full-face blush, aroused:1.3), long hair, medium breasts, nipples`
|