File size: 3,435 Bytes
bee3639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e2412
bee3639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01e2412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee3639
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-og-concat-modified-aochild
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-og-concat-modified-aochild

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9256

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 5.9858        | 0.24  | 500   | 5.0593          |
| 4.752         | 0.48  | 1000  | 4.6760          |
| 4.4497        | 0.72  | 1500  | 4.4435          |
| 4.2543        | 0.96  | 2000  | 4.2976          |
| 4.0555        | 1.21  | 2500  | 4.2137          |
| 3.9693        | 1.45  | 3000  | 4.1335          |
| 3.906         | 1.69  | 3500  | 4.0568          |
| 3.8429        | 1.93  | 4000  | 3.9920          |
| 3.6732        | 2.17  | 4500  | 3.9691          |
| 3.6327        | 2.41  | 5000  | 3.9306          |
| 3.6116        | 2.65  | 5500  | 3.8914          |
| 3.5938        | 2.89  | 6000  | 3.8513          |
| 3.455         | 3.13  | 6500  | 3.8610          |
| 3.3859        | 3.38  | 7000  | 3.8405          |
| 3.3923        | 3.62  | 7500  | 3.8156          |
| 3.3951        | 3.86  | 8000  | 3.7887          |
| 3.2753        | 4.1   | 8500  | 3.8143          |
| 3.1704        | 4.34  | 9000  | 3.8108          |
| 3.1945        | 4.58  | 9500  | 3.7931          |
| 3.1957        | 4.82  | 10000 | 3.7730          |
| 3.1308        | 5.06  | 10500 | 3.7997          |
| 2.9454        | 5.3   | 11000 | 3.8140          |
| 2.981         | 5.54  | 11500 | 3.8037          |
| 2.9917        | 5.79  | 12000 | 3.7886          |
| 2.9661        | 6.03  | 12500 | 3.8061          |
| 2.7333        | 6.27  | 13000 | 3.8368          |
| 2.7658        | 6.51  | 13500 | 3.8365          |
| 2.7757        | 6.75  | 14000 | 3.8304          |
| 2.7771        | 6.99  | 14500 | 3.8187          |
| 2.5518        | 7.23  | 15000 | 3.8726          |
| 2.56          | 7.47  | 15500 | 3.8759          |
| 2.5737        | 7.71  | 16000 | 3.8764          |
| 2.5772        | 7.96  | 16500 | 3.8738          |
| 2.4267        | 8.2   | 17000 | 3.9046          |
| 2.4129        | 8.44  | 17500 | 3.9102          |
| 2.4256        | 8.68  | 18000 | 3.9135          |
| 2.4177        | 8.92  | 18500 | 3.9138          |
| 2.3675        | 9.16  | 19000 | 3.9222          |
| 2.3412        | 9.4   | 19500 | 3.9246          |
| 2.3399        | 9.64  | 20000 | 3.9256          |
| 2.3381        | 9.88  | 20500 | 3.9256          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3