File size: 2,512 Bytes
7fd7a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-concat-mod-datasets-rarity1-rerun
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-concat-mod-datasets-rarity1-rerun

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0263

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 7
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.7311        | 0.3   | 500   | 5.6497          |
| 5.3805        | 0.59  | 1000  | 5.2065          |
| 5.0306        | 0.89  | 1500  | 4.9574          |
| 4.7526        | 1.18  | 2000  | 4.8142          |
| 4.6058        | 1.48  | 2500  | 4.6885          |
| 4.4982        | 1.78  | 3000  | 4.5904          |
| 4.3593        | 2.07  | 3500  | 4.5261          |
| 4.185         | 2.37  | 4000  | 4.4783          |
| 4.154         | 2.66  | 4500  | 4.4233          |
| 4.1262        | 2.96  | 5000  | 4.3708          |
| 3.8986        | 3.26  | 5500  | 4.3804          |
| 3.8767        | 3.55  | 6000  | 4.3494          |
| 3.8605        | 3.85  | 6500  | 4.3124          |
| 3.7194        | 4.14  | 7000  | 4.3395          |
| 3.5981        | 4.44  | 7500  | 4.3194          |
| 3.5952        | 4.74  | 8000  | 4.3059          |
| 3.5511        | 5.03  | 8500  | 4.3089          |
| 3.3393        | 5.33  | 9000  | 4.3236          |
| 3.3388        | 5.62  | 9500  | 4.3220          |
| 3.3443        | 5.92  | 10000 | 4.3139          |
| 3.2213        | 6.22  | 10500 | 4.3304          |
| 3.1851        | 6.51  | 11000 | 4.3313          |
| 3.1911        | 6.81  | 11500 | 4.3317          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3