Edit model card

indic-bert-MLTC-BB1

This model is a fine-tuned version of ai4bharat/indic-bert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5041
  • F1: 0.7518
  • Roc Auc: 0.7539
  • Accuracy: 0.3728
  • Hamming Loss: 0.2461
  • Jaccard Score: 0.6023
  • Zero One Loss: 0.6272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy Hamming Loss Jaccard Score Zero One Loss
0.6264 1.0 49 0.6551 0.6188 0.6176 0.1028 0.3824 0.4481 0.8972
0.6024 2.0 98 0.6163 0.6967 0.6442 0.3316 0.3554 0.5345 0.6684
0.5574 3.0 147 0.5932 0.7081 0.6492 0.3548 0.3503 0.5481 0.6452
0.5267 4.0 196 0.6041 0.7105 0.6512 0.3573 0.3483 0.5510 0.6427
0.4988 5.0 245 0.5409 0.7215 0.6822 0.3573 0.3175 0.5644 0.6427
0.4609 6.0 294 0.5189 0.7188 0.6880 0.3419 0.3117 0.5611 0.6581
0.4214 7.0 343 0.5426 0.7423 0.7196 0.3676 0.2802 0.5902 0.6324
0.426 8.0 392 0.5119 0.7478 0.7416 0.3702 0.2584 0.5972 0.6298
0.4034 9.0 441 0.5065 0.7526 0.7506 0.3805 0.2494 0.6033 0.6195
0.3974 10.0 490 0.5041 0.7518 0.7539 0.3728 0.2461 0.6023 0.6272

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NaeemCSECUET18/indic-bert-MLTC-BB1

Finetuned
(15)
this model