wav2vec2-fleur-mms-batch6-epoch16-finetunning
This model is a fine-tuned version of Nachuwu/wav2vec2-fleur-mms-batch6-epoch16 on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7739
- Wer: 0.5252
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 16
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
22.1887 | 0.42 | 100 | 11.1500 | 2.4576 |
16.4246 | 0.84 | 200 | 7.8925 | 1.2116 |
9.6917 | 1.27 | 300 | 5.2737 | 1.0255 |
3.615 | 1.69 | 400 | 3.1120 | 0.9835 |
2.7798 | 2.11 | 500 | 3.0797 | 0.9924 |
2.447 | 2.53 | 600 | 2.6319 | 1.0207 |
2.1429 | 2.95 | 700 | 2.3483 | 0.9924 |
1.6767 | 3.38 | 800 | 1.2960 | 0.7926 |
1.19 | 3.8 | 900 | 1.2001 | 0.7250 |
1.1818 | 4.22 | 1000 | 1.0052 | 0.5837 |
1.0365 | 4.64 | 1100 | 0.9885 | 0.6120 |
0.9911 | 5.06 | 1200 | 1.0018 | 0.5596 |
0.9513 | 5.49 | 1300 | 0.9199 | 0.5500 |
0.8994 | 5.91 | 1400 | 0.9272 | 0.5672 |
0.9067 | 6.33 | 1500 | 0.8948 | 0.5451 |
0.8964 | 6.75 | 1600 | 0.8798 | 0.5665 |
0.888 | 7.17 | 1700 | 0.8836 | 0.6223 |
0.8494 | 7.59 | 1800 | 0.8691 | 0.5830 |
0.8678 | 8.02 | 1900 | 0.8436 | 0.5493 |
0.8393 | 8.44 | 2000 | 0.8303 | 0.5431 |
0.8091 | 8.86 | 2100 | 0.8202 | 0.5438 |
0.8937 | 9.28 | 2200 | 0.7999 | 0.5341 |
0.7479 | 9.7 | 2300 | 0.8417 | 0.5258 |
0.8014 | 10.13 | 2400 | 0.8220 | 0.5369 |
0.8366 | 10.55 | 2500 | 0.8024 | 0.5348 |
0.7695 | 10.97 | 2600 | 0.8242 | 0.5686 |
0.761 | 11.39 | 2700 | 0.7992 | 0.5569 |
0.7845 | 11.81 | 2800 | 0.7981 | 0.5500 |
0.8056 | 12.24 | 2900 | 0.7900 | 0.5355 |
0.8236 | 12.66 | 3000 | 0.7826 | 0.5279 |
0.8135 | 13.08 | 3100 | 0.7834 | 0.5245 |
0.709 | 13.5 | 3200 | 0.7814 | 0.5320 |
0.7298 | 13.92 | 3300 | 0.7812 | 0.5258 |
0.7536 | 14.35 | 3400 | 0.7799 | 0.5293 |
0.7263 | 14.77 | 3500 | 0.7803 | 0.5224 |
0.7469 | 15.19 | 3600 | 0.7745 | 0.5362 |
0.7543 | 15.61 | 3700 | 0.7739 | 0.5252 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support