PULI BERT-Large

For further details, see our demo site.

  • Hungarian BERT large model (MegatronBERT)
  • Trained with Megatron-DeepSpeed github
  • Dataset: 36.3 billion words
  • Checkpoint: 1 500 000 steps

Limitations

  • max_seq_length = 1024

Citation

If you use this model, please cite the following paper:

@inproceedings {yang-puli,
    title = {Jönnek a nagyok! BERT-Large, GPT-2 és GPT-3 nyelvmodellek magyar nyelvre},
    booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
    year = {2023},
    publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
    address = {Szeged, Hungary},
    author = {Yang, Zijian Győző and Dodé, Réka and Ferenczi, Gergő and Héja, Enikő and Jelencsik-Mátyus, Kinga and Kőrös, Ádám and Laki, László János and Ligeti-Nagy, Noémi and Vadász, Noémi and Váradi, Tamás},
    pages = {247--262}
}

Usage

from transformers import BertTokenizer, MegatronBertModel

tokenizer = BertTokenizer.from_pretrained('NYTK/PULI-BERT-Large')
model = MegatronBertModel.from_pretrained('NYTK/PULI-BERT-Large')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt', do_lower_case=False)
output = model(**encoded_input)
Downloads last month
70
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.