Kjøretid

{'train_runtime': 291.2967, 'train_samples_per_second': 51.494, 'train_steps_per_second': 0.189, 'train_loss': 0.6998663252050227, 'epoch': 4.94}

Time: 291.30

Samples/second: 51.49

GPU memory occupied: 6267 MB.

norbert2_sentiment_norec_en_gpu_500_rader_9

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6255
  • Compute Metrics: :
  • Accuracy: 0.694
  • Balanced Accuracy: 0.5023
  • F1 Score: 0.8185
  • Recall: 0.9914
  • Precision: 0.6970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Compute Metrics Accuracy Balanced Accuracy F1 Score Recall Precision
No log 1.0 2 0.6208 : 0.684 0.5006 0.8101 0.9684 0.6963
No log 2.0 4 0.6262 : 0.692 0.4990 0.8175 0.9914 0.6956
No log 3.0 6 0.6338 : 0.672 0.4846 0.8034 0.9626 0.6893
No log 4.0 8 0.6240 : 0.698 0.5051 0.8213 0.9971 0.6982
0.6681 5.0 10 0.6255 : 0.694 0.5023 0.8185 0.9914 0.6970

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support