norbert2_sentiment_norec_8

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5046
  • Start: ------------------------------------------------------------
  • Accuracy: 0.8
  • Balanced Accuracy: 0.5
  • F1 Score: 0.8889
  • Recall: 1.0
  • Precision: 0.8
  • End: ------------------------------------------------------------

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Start Accuracy Balanced Accuracy F1 Score Recall Precision End
0.4534 1.0 5 0.6422 ------------------------------------------------------------ 0.8 0.5 0.8889 1.0 0.8 ------------------------------------------------------------
0.5493 2.0 10 0.5159 ------------------------------------------------------------ 0.8 0.5 0.8889 1.0 0.8 ------------------------------------------------------------
0.3452 3.0 15 0.5453 ------------------------------------------------------------ 0.8 0.5 0.8889 1.0 0.8 ------------------------------------------------------------
0.2336 4.0 20 0.5046 ------------------------------------------------------------ 0.8 0.5 0.8889 1.0 0.8 ------------------------------------------------------------

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support