segformer-b0-finetuned-morphpadver1-no_ckp-2
This model is a fine-tuned version of nvidia/mit-b0 on the NICOPOI-9/morphpad_512_4class dataset. It achieves the following results on the evaluation set:
- Loss: 0.0023
- Mean Iou: 0.9987
- Mean Accuracy: 0.9994
- Overall Accuracy: 0.9994
- Accuracy 0-0: 0.9992
- Accuracy 0-90: 0.9991
- Accuracy 90-0: 0.9994
- Accuracy 90-90: 0.9998
- Iou 0-0: 0.9991
- Iou 0-90: 0.9984
- Iou 90-0: 0.9984
- Iou 90-90: 0.9991
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2037 | 0.1112 | 1000 | 0.1512 | 0.8947 | 0.9437 | 0.9447 | 0.9614 | 0.9508 | 0.8858 | 0.9769 | 0.9353 | 0.8554 | 0.8502 | 0.9381 |
0.0768 | 0.2224 | 2000 | 0.0772 | 0.9450 | 0.9715 | 0.9720 | 0.9772 | 0.9613 | 0.9599 | 0.9878 | 0.9643 | 0.9249 | 0.9246 | 0.9664 |
0.1051 | 0.3337 | 3000 | 0.0555 | 0.9622 | 0.9807 | 0.9809 | 0.9885 | 0.9656 | 0.9794 | 0.9893 | 0.9798 | 0.9440 | 0.9446 | 0.9804 |
0.0426 | 0.4449 | 4000 | 0.0438 | 0.9706 | 0.9851 | 0.9852 | 0.9908 | 0.9785 | 0.9805 | 0.9905 | 0.9852 | 0.9557 | 0.9558 | 0.9858 |
0.03 | 0.5561 | 5000 | 0.0386 | 0.9735 | 0.9866 | 0.9867 | 0.9897 | 0.9893 | 0.9758 | 0.9916 | 0.9866 | 0.9589 | 0.9602 | 0.9886 |
0.0255 | 0.6673 | 6000 | 0.0314 | 0.9788 | 0.9892 | 0.9894 | 0.9926 | 0.9796 | 0.9880 | 0.9968 | 0.9902 | 0.9671 | 0.9664 | 0.9914 |
0.0446 | 0.7786 | 7000 | 0.0353 | 0.9822 | 0.9910 | 0.9911 | 0.9935 | 0.9873 | 0.9890 | 0.9944 | 0.9915 | 0.9727 | 0.9725 | 0.9921 |
0.0188 | 0.8898 | 8000 | 0.0323 | 0.9836 | 0.9917 | 0.9919 | 0.9964 | 0.9861 | 0.9882 | 0.9962 | 0.9932 | 0.9741 | 0.9730 | 0.9941 |
0.017 | 1.0010 | 9000 | 0.0167 | 0.9895 | 0.9947 | 0.9948 | 0.9966 | 0.9916 | 0.9931 | 0.9977 | 0.9946 | 0.9844 | 0.9842 | 0.9951 |
0.0135 | 1.1122 | 10000 | 0.0191 | 0.9890 | 0.9945 | 0.9946 | 0.9975 | 0.9882 | 0.9949 | 0.9974 | 0.9952 | 0.9829 | 0.9825 | 0.9955 |
0.0164 | 1.2234 | 11000 | 0.0147 | 0.9912 | 0.9956 | 0.9956 | 0.9979 | 0.9942 | 0.9922 | 0.9980 | 0.9957 | 0.9867 | 0.9863 | 0.9961 |
0.0602 | 1.3347 | 12000 | 0.0195 | 0.9913 | 0.9956 | 0.9957 | 0.9972 | 0.9929 | 0.9937 | 0.9986 | 0.9960 | 0.9866 | 0.9864 | 0.9962 |
0.0095 | 1.4459 | 13000 | 0.0229 | 0.9899 | 0.9949 | 0.9950 | 0.9970 | 0.9941 | 0.9899 | 0.9987 | 0.9959 | 0.9840 | 0.9832 | 0.9966 |
0.0434 | 1.5571 | 14000 | 0.0094 | 0.9942 | 0.9971 | 0.9971 | 0.9985 | 0.9947 | 0.9965 | 0.9987 | 0.9970 | 0.9913 | 0.9914 | 0.9971 |
0.0108 | 1.6683 | 15000 | 0.0110 | 0.9935 | 0.9967 | 0.9968 | 0.9983 | 0.9931 | 0.9967 | 0.9989 | 0.9973 | 0.9897 | 0.9896 | 0.9974 |
0.0091 | 1.7796 | 16000 | 0.0094 | 0.9946 | 0.9973 | 0.9973 | 0.9981 | 0.9954 | 0.9973 | 0.9983 | 0.9972 | 0.9919 | 0.9918 | 0.9973 |
0.0417 | 1.8908 | 17000 | 0.0123 | 0.9930 | 0.9965 | 0.9966 | 0.9969 | 0.9931 | 0.9972 | 0.9988 | 0.9961 | 0.9887 | 0.9898 | 0.9976 |
0.0101 | 2.0020 | 18000 | 0.0080 | 0.9954 | 0.9977 | 0.9977 | 0.9980 | 0.9959 | 0.9982 | 0.9987 | 0.9975 | 0.9933 | 0.9930 | 0.9978 |
0.0072 | 2.1132 | 19000 | 0.0193 | 0.9943 | 0.9971 | 0.9972 | 0.9981 | 0.9939 | 0.9978 | 0.9987 | 0.9975 | 0.9911 | 0.9906 | 0.9978 |
0.0077 | 2.2244 | 20000 | 0.0056 | 0.9967 | 0.9984 | 0.9984 | 0.9986 | 0.9975 | 0.9984 | 0.9990 | 0.9980 | 0.9956 | 0.9952 | 0.9981 |
0.0048 | 2.3357 | 21000 | 0.0052 | 0.9969 | 0.9985 | 0.9985 | 0.9991 | 0.9973 | 0.9981 | 0.9994 | 0.9983 | 0.9956 | 0.9955 | 0.9983 |
0.0052 | 2.4469 | 22000 | 0.0155 | 0.9962 | 0.9981 | 0.9981 | 0.9992 | 0.9948 | 0.9989 | 0.9994 | 0.9982 | 0.9941 | 0.9941 | 0.9983 |
0.0042 | 2.5581 | 23000 | 0.0042 | 0.9976 | 0.9988 | 0.9988 | 0.9989 | 0.9979 | 0.9990 | 0.9994 | 0.9984 | 0.9967 | 0.9967 | 0.9985 |
0.004 | 2.6693 | 24000 | 0.0041 | 0.9976 | 0.9988 | 0.9988 | 0.9995 | 0.9977 | 0.9986 | 0.9994 | 0.9984 | 0.9967 | 0.9968 | 0.9986 |
0.0044 | 2.7806 | 25000 | 0.0056 | 0.9971 | 0.9986 | 0.9986 | 0.9992 | 0.9968 | 0.9987 | 0.9995 | 0.9987 | 0.9956 | 0.9956 | 0.9986 |
0.0036 | 2.8918 | 26000 | 0.0236 | 0.9960 | 0.9980 | 0.9980 | 0.9988 | 0.9946 | 0.9991 | 0.9995 | 0.9985 | 0.9935 | 0.9932 | 0.9987 |
0.0038 | 3.0030 | 27000 | 0.0156 | 0.9969 | 0.9985 | 0.9985 | 0.9992 | 0.9963 | 0.9989 | 0.9996 | 0.9988 | 0.9952 | 0.9951 | 0.9987 |
0.0028 | 3.1142 | 28000 | 0.0037 | 0.9979 | 0.9989 | 0.9990 | 0.9992 | 0.9978 | 0.9992 | 0.9995 | 0.9988 | 0.9970 | 0.9969 | 0.9988 |
0.0044 | 3.2254 | 29000 | 0.0030 | 0.9983 | 0.9992 | 0.9992 | 0.9993 | 0.9987 | 0.9993 | 0.9994 | 0.9989 | 0.9978 | 0.9978 | 0.9989 |
0.0051 | 3.3367 | 30000 | 0.0111 | 0.9975 | 0.9987 | 0.9988 | 0.9993 | 0.9969 | 0.9990 | 0.9998 | 0.9989 | 0.9961 | 0.9961 | 0.9989 |
0.0027 | 3.4479 | 31000 | 0.0176 | 0.9964 | 0.9982 | 0.9982 | 0.9995 | 0.9945 | 0.9992 | 0.9996 | 0.9990 | 0.9939 | 0.9939 | 0.9989 |
0.0126 | 3.5591 | 32000 | 0.0095 | 0.9973 | 0.9986 | 0.9987 | 0.9996 | 0.9963 | 0.9992 | 0.9995 | 0.9990 | 0.9956 | 0.9956 | 0.9989 |
0.0097 | 3.6703 | 33000 | 0.0044 | 0.9973 | 0.9986 | 0.9987 | 0.9997 | 0.9962 | 0.9989 | 0.9997 | 0.9989 | 0.9956 | 0.9958 | 0.9988 |
0.0066 | 3.7816 | 34000 | 0.0030 | 0.9982 | 0.9991 | 0.9991 | 0.9996 | 0.9977 | 0.9993 | 0.9997 | 0.9990 | 0.9974 | 0.9976 | 0.9987 |
0.0024 | 3.8928 | 35000 | 0.0025 | 0.9987 | 0.9993 | 0.9993 | 0.9996 | 0.9990 | 0.9991 | 0.9996 | 0.9991 | 0.9983 | 0.9982 | 0.9991 |
0.0032 | 4.0040 | 36000 | 0.0026 | 0.9985 | 0.9992 | 0.9992 | 0.9996 | 0.9983 | 0.9994 | 0.9996 | 0.9990 | 0.9979 | 0.9979 | 0.9990 |
0.003 | 4.1152 | 37000 | 0.0025 | 0.9986 | 0.9993 | 0.9993 | 0.9995 | 0.9987 | 0.9993 | 0.9997 | 0.9991 | 0.9981 | 0.9981 | 0.9990 |
0.0023 | 4.2264 | 38000 | 0.0023 | 0.9987 | 0.9994 | 0.9994 | 0.9996 | 0.9989 | 0.9992 | 0.9997 | 0.9991 | 0.9984 | 0.9984 | 0.9991 |
0.0068 | 4.3377 | 39000 | 0.0025 | 0.9987 | 0.9993 | 0.9993 | 0.9993 | 0.9988 | 0.9995 | 0.9997 | 0.9991 | 0.9983 | 0.9982 | 0.9990 |
0.0058 | 4.4489 | 40000 | 0.0030 | 0.9980 | 0.9990 | 0.9990 | 0.9996 | 0.9970 | 0.9996 | 0.9997 | 0.9991 | 0.9968 | 0.9971 | 0.9989 |
0.0039 | 4.5601 | 41000 | 0.0022 | 0.9989 | 0.9994 | 0.9994 | 0.9995 | 0.9993 | 0.9993 | 0.9997 | 0.9992 | 0.9985 | 0.9985 | 0.9992 |
0.0021 | 4.6713 | 42000 | 0.0022 | 0.9988 | 0.9994 | 0.9994 | 0.9995 | 0.9990 | 0.9994 | 0.9997 | 0.9992 | 0.9984 | 0.9984 | 0.9991 |
0.0016 | 4.7826 | 43000 | 0.0023 | 0.9987 | 0.9993 | 0.9993 | 0.9995 | 0.9987 | 0.9995 | 0.9996 | 0.9992 | 0.9982 | 0.9981 | 0.9992 |
0.0283 | 4.8938 | 44000 | 0.0023 | 0.9987 | 0.9994 | 0.9994 | 0.9992 | 0.9991 | 0.9994 | 0.9998 | 0.9991 | 0.9984 | 0.9984 | 0.9991 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for NICOPOI-9/segformer-b0-finetuned-morphpadver1-no_ckp-2
Base model
nvidia/mit-b0