Update src/pipeline.py
#1
by
Shinichie
- opened
- src/pipeline.py +105 -107
src/pipeline.py
CHANGED
@@ -2,139 +2,137 @@ import os
|
|
2 |
import torch
|
3 |
import torch._dynamo
|
4 |
import gc
|
5 |
-
|
6 |
import json
|
7 |
import transformers
|
8 |
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
from transformers import T5EncoderModel, T5TokenizerFast
|
10 |
from PIL.Image import Image
|
11 |
-
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
12 |
from pipelines.models import TextToImageRequest
|
13 |
from optimum.quanto import requantize
|
14 |
-
import json
|
15 |
-
|
16 |
from torch import Generator
|
17 |
-
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
18 |
-
|
19 |
-
# MYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMYMY
|
20 |
-
# ApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricityApricity
|
21 |
-
|
22 |
from torch._dynamo import config
|
23 |
from torch._inductor import config as ind_config
|
24 |
-
import
|
25 |
-
import
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
revision=revision_root,
|
75 |
-
transformer=transformer_model,
|
76 |
-
torch_dtype=torch.bfloat16)
|
77 |
-
pipe.to("cuda")
|
78 |
-
|
79 |
-
try:
|
80 |
|
81 |
-
|
|
|
|
|
82 |
pipe.transformer.fuse_qkv_projections()
|
83 |
pipe.vae.fuse_qkv_projections()
|
84 |
|
85 |
-
#
|
86 |
pipe.transformer.to(memory_format=torch.channels_last)
|
87 |
pipe.vae.to(memory_format=torch.channels_last)
|
88 |
|
89 |
-
#
|
90 |
config = torch._inductor.config
|
91 |
-
config.disable_progress = False
|
92 |
-
config.conv_1x1_as_mm = True
|
93 |
|
94 |
-
#
|
95 |
pipe.transformer = torch.compile(
|
96 |
-
pipe.transformer,
|
|
|
|
|
97 |
)
|
98 |
pipe.vae.decode = torch.compile(
|
99 |
-
pipe.vae.decode,
|
|
|
|
|
100 |
)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
114 |
|
|
|
|
|
115 |
pipe(
|
116 |
-
"
|
117 |
output_type="pil",
|
118 |
-
num_inference_steps=4
|
119 |
).images[0]
|
120 |
-
print("
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
).images[0]
|
|
|
2 |
import torch
|
3 |
import torch._dynamo
|
4 |
import gc
|
|
|
5 |
import json
|
6 |
import transformers
|
7 |
from huggingface_hub.constants import HF_HUB_CACHE
|
8 |
from transformers import T5EncoderModel, T5TokenizerFast
|
9 |
from PIL.Image import Image
|
10 |
+
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny, FluxTransformer2DModel, DiffusionPipeline
|
11 |
from pipelines.models import TextToImageRequest
|
12 |
from optimum.quanto import requantize
|
|
|
|
|
13 |
from torch import Generator
|
|
|
|
|
|
|
|
|
|
|
14 |
from torch._dynamo import config
|
15 |
from torch._inductor import config as ind_config
|
16 |
+
from typing import Dict, Any, Callable
|
17 |
+
from functools import wraps
|
18 |
+
|
19 |
+
def error_handler(func: Callable):
|
20 |
+
@wraps(func)
|
21 |
+
def wrapper(*args, **kwargs):
|
22 |
+
try:
|
23 |
+
return func(*args, **kwargs)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error in {func.__name__}: {str(e)}")
|
26 |
+
return wrapper
|
27 |
+
|
28 |
+
class TorchOptimizer:
|
29 |
+
def optimize_settings(self):
|
30 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
+
torch.backends.cudnn.allow_tf32 = True
|
32 |
+
torch.backends.cudnn.benchmark = True
|
33 |
+
torch.set_float32_matmul_precision("high")
|
34 |
+
|
35 |
+
def clear_cache(self):
|
36 |
+
torch.cuda.empty_cache()
|
37 |
+
torch.cuda.reset_max_memory_allocated()
|
38 |
+
torch.cuda.reset_peak_memory_stats()
|
39 |
+
|
40 |
+
class PipelineManager:
|
41 |
+
def __init__(self):
|
42 |
+
self.ckpt_root = "MyApricity/FLUX_OPT_SCHNELL_1.2"
|
43 |
+
self.revision_root = "488528b6f815bff1bbc747cf1e0947c77c544665"
|
44 |
+
self.pipeline = None
|
45 |
+
self.optimizer = TorchOptimizer()
|
46 |
+
|
47 |
+
# Configure environment
|
48 |
+
torch._dynamo.config.suppress_errors = True
|
49 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = "expandable_segments:True"
|
50 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
51 |
+
|
52 |
+
# Initialize torch settings
|
53 |
+
self.optimizer.optimize_settings()
|
54 |
+
|
55 |
+
|
56 |
+
def load_transformer(self):
|
57 |
+
transformer_path = os.path.join(
|
58 |
+
HF_HUB_CACHE,
|
59 |
+
"models--MyApricity--FLUX_OPT_SCHNELL_1.2/snapshots/488528b6f815bff1bbc747cf1e0947c77c544665"
|
60 |
+
)
|
61 |
+
return FluxTransformer2DModel.from_pretrained(
|
62 |
+
transformer_path,
|
63 |
+
torch_dtype=torch.bfloat16,
|
64 |
+
use_safetensors=False
|
65 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
@error_handler
|
68 |
+
def optimize_pipeline(self, pipe):
|
69 |
+
# Fuse QKV projections
|
70 |
pipe.transformer.fuse_qkv_projections()
|
71 |
pipe.vae.fuse_qkv_projections()
|
72 |
|
73 |
+
# Optimize memory layout
|
74 |
pipe.transformer.to(memory_format=torch.channels_last)
|
75 |
pipe.vae.to(memory_format=torch.channels_last)
|
76 |
|
77 |
+
# Configure torch inductor
|
78 |
config = torch._inductor.config
|
79 |
+
config.disable_progress = False
|
80 |
+
config.conv_1x1_as_mm = True
|
81 |
|
82 |
+
# Compile modules
|
83 |
pipe.transformer = torch.compile(
|
84 |
+
pipe.transformer,
|
85 |
+
mode="max-autotune",
|
86 |
+
fullgraph=True
|
87 |
)
|
88 |
pipe.vae.decode = torch.compile(
|
89 |
+
pipe.vae.decode,
|
90 |
+
mode="max-autotune",
|
91 |
+
fullgraph=True
|
92 |
)
|
93 |
|
94 |
+
return pipe
|
95 |
+
|
96 |
+
def load_pipeline(self):
|
97 |
+
# Load transformer model
|
98 |
+
transformer_model = self.load_transformer()
|
99 |
+
|
100 |
+
# Create pipeline
|
101 |
+
pipe = DiffusionPipeline.from_pretrained(
|
102 |
+
self.ckpt_root,
|
103 |
+
revision=self.revision_root,
|
104 |
+
transformer=transformer_model,
|
105 |
+
torch_dtype=torch.bfloat16
|
106 |
+
)
|
107 |
+
pipe.to("cuda")
|
108 |
|
109 |
+
# Optimize pipeline
|
110 |
+
pipe = self.optimize_pipeline(pipe)
|
111 |
|
112 |
+
# Trigger compilation
|
113 |
+
print("Running torch compilation...")
|
114 |
pipe(
|
115 |
+
"dummy prompt to trigger torch compilation",
|
116 |
output_type="pil",
|
117 |
+
num_inference_steps=4
|
118 |
).images[0]
|
119 |
+
print("Finished torch compilation")
|
120 |
+
|
121 |
+
return pipe
|
122 |
+
|
123 |
+
def run_inference(self, request: TextToImageRequest) -> Image:
|
124 |
+
if self.pipeline is None:
|
125 |
+
self.pipeline = self.load_pipeline()
|
126 |
+
|
127 |
+
self.optimizer.clear_cache()
|
128 |
+
generator = Generator(self.pipeline.device).manual_seed(request.seed)
|
129 |
+
|
130 |
+
return self.pipeline(
|
131 |
+
request.prompt,
|
132 |
+
generator=generator,
|
133 |
+
guidance_scale=0.0,
|
134 |
+
num_inference_steps=4,
|
135 |
+
max_sequence_length=256,
|
136 |
+
height=request.height,
|
137 |
+
width=request.width,
|
138 |
+
).images[0]
|
|