File size: 1,850 Bytes
84aeffc
 
 
 
 
5f0af16
84aeffc
 
 
 
 
2d589f8
84aeffc
2d589f8
 
 
 
84aeffc
2d589f8
 
 
 
84aeffc
2d589f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
tags:
- text-generation-inference
- transformers
- trl
- sft
license: apache-2.0
language:
- en
---

# INFERENCE

```python
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
finetuned_model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/sql-assistant")
finetuned_model.to(device)
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/sql-assistant")

prompt = """<|im_start|>system
<|im_start|>system
You are a helpful SQL assistant named Securitron. Your working table is 'scans' with the following schema:

CREATE TABLE scans (
    id SERIAL PRIMARY KEY,
    findings_sca INT,
    findings_secrets INT,
    findings_compliance INT,
    findings_iac INT,
    findings_malware INT,
    findings_api INT,
    findings_pii INT,
    findings_container INT,
    timestamp TIMESTAMP,
    total_findings INT,
    fp_vulnerabilities INT,
    tp_vulnerabilities INT,
    unverified_vulnerabilities INT,
    findings_sast INT,
    group_id INT,
    project_link TEXT,
    project TEXT,
    repository TEXT,
    scan_link TEXT,
    scan_id TEXT,
    branch TEXT,
    commit TEXT,
    tags TEXT,
    initiator TEXT
);<|im_end|>
<|im_start|>user
Show me yesterday's scan with the fewest API findings.<|im_end|>
<|im_start|>assistant
"""

s = time.time()

encodeds = tokenizer(prompt, return_tensors="pt",truncation=True).input_ids.to(device)
text_streamer = TextStreamer(tokenizer, skip_prompt = True)

# Increase max_new_tokens if needed
response = finetuned_model.generate(
        input_ids=encodeds,
        streamer=text_streamer,
        max_new_tokens=512,
        use_cache=True,
        pad_token_id=151645,
        eos_token_id=151645,
        num_return_sequences=1
    )
e = time.time()
print(f'time taken:{e-s}')
```