Edit model card

dna_bert_3_2-finetuned

This model is a fine-tuned version of armheb/DNA_bert_3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8974 1.0 62 0.6160
0.6057 2.0 124 0.6000
0.5957 3.0 186 0.5897
0.5883 4.0 248 0.5873
0.5844 5.0 310 0.5843
0.5812 6.0 372 0.5811
0.5812 7.0 434 0.5832
0.5769 8.0 496 0.5773
0.5727 9.0 558 0.5771
0.5702 10.0 620 0.5772
0.5673 11.0 682 0.5771
0.5663 12.0 744 0.5769
0.5569 13.0 806 0.5731
0.5518 14.0 868 0.5731
0.5486 15.0 930 0.5728
0.544 16.0 992 0.5683
0.5336 17.0 1054 0.5694
0.5245 18.0 1116 0.5639
0.5162 19.0 1178 0.5641
0.5057 20.0 1240 0.5626
0.4966 21.0 1302 0.5612
0.4859 22.0 1364 0.5492
0.4781 23.0 1426 0.5470
0.4601 24.0 1488 0.5399
0.4523 25.0 1550 0.5424
0.4432 26.0 1612 0.5328
0.4341 27.0 1674 0.5336
0.4183 28.0 1736 0.5315
0.4133 29.0 1798 0.5268
0.4111 30.0 1860 0.5256
0.3919 31.0 1922 0.5155
0.3899 32.0 1984 0.5179
0.3804 33.0 2046 0.5145
0.368 34.0 2108 0.5189
0.3603 35.0 2170 0.5081
0.3602 36.0 2232 0.5098
0.352 37.0 2294 0.5054
0.3468 38.0 2356 0.5024
0.3359 39.0 2418 0.5053
0.3342 40.0 2480 0.5031
0.3294 41.0 2542 0.4978
0.3158 42.0 2604 0.4923
0.3191 43.0 2666 0.4944
0.3122 44.0 2728 0.4970
0.3084 45.0 2790 0.4910
0.2978 46.0 2852 0.4898
0.3012 47.0 2914 0.4880
0.2938 48.0 2976 0.4924
0.2932 49.0 3038 0.4879
0.2842 50.0 3100 0.4847
0.2828 51.0 3162 0.4849
0.2793 52.0 3224 0.4767
0.2753 53.0 3286 0.4796
0.2725 54.0 3348 0.4829
0.2695 55.0 3410 0.4831
0.2671 56.0 3472 0.4791
0.2664 57.0 3534 0.4791
0.2563 58.0 3596 0.4765
0.2583 59.0 3658 0.4742
0.2535 60.0 3720 0.4766
0.2496 61.0 3782 0.4741
0.2489 62.0 3844 0.4766
0.2444 63.0 3906 0.4748
0.2417 64.0 3968 0.4768
0.2422 65.0 4030 0.4727
0.2404 66.0 4092 0.4729
0.2405 67.0 4154 0.4744
0.2353 68.0 4216 0.4729
0.2307 69.0 4278 0.4705
0.2281 70.0 4340 0.4717
0.232 71.0 4402 0.4719
0.2313 72.0 4464 0.4713
0.2266 73.0 4526 0.4726
0.2241 74.0 4588 0.4675
0.2256 75.0 4650 0.4688
0.2299 76.0 4712 0.4713
0.2199 77.0 4774 0.4720
0.2228 78.0 4836 0.4682
0.2261 79.0 4898 0.4676
0.2167 80.0 4960 0.4685
0.2126 81.0 5022 0.4676
0.2217 82.0 5084 0.4672
0.216 83.0 5146 0.4672
0.2152 84.0 5208 0.4682
0.219 85.0 5270 0.4663
0.2135 86.0 5332 0.4655
0.2046 87.0 5394 0.4644
0.2177 88.0 5456 0.4679
0.2052 89.0 5518 0.4659
0.2147 90.0 5580 0.4665
0.211 91.0 5642 0.4668
0.2089 92.0 5704 0.4649
0.2149 93.0 5766 0.4651
0.2034 94.0 5828 0.4689
0.2071 95.0 5890 0.4659
0.2145 96.0 5952 0.4664
0.2036 97.0 6014 0.4661
0.2092 98.0 6076 0.4676
0.2079 99.0 6138 0.4667
0.2081 100.0 6200 0.4668

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.