Furkan Gözükara

MonsterMMORPG

AI & ML interests

Check out my youtube page SECourses for Stable Diffusion tutorials. They will help you tremendously in every topic

Recent Activity

View all activity

Articles

Organizations

MonsterMMORPG's activity

replied to their post about 11 hours ago
Reacted to their post with 🤯🤝👍🧠😎🤗❤️👀🚀🔥 1 day ago
view post
Post
845
FLUX Redux is a hidden Gem

I am still doing huge research to publish an amazing fully Public - no paywalled Tutorial, but this is generated via SwarmUI

Style Model Merge Strength : 0.5

FLUX Guidance Scale is : 6

Used base model is my FLUX fine tuned model with 256 images via Kohya SS GUI as shown in tutorial ( https://youtu.be/FvpWy1x5etM ) - 70 epoch

Prompt : anime ohwx man walking in a jungle <segment:yolo-face_yolov9c.pt-1,0.7,0.5> ohwx man, anime
  • 2 replies
·
posted an update 1 day ago
view post
Post
845
FLUX Redux is a hidden Gem

I am still doing huge research to publish an amazing fully Public - no paywalled Tutorial, but this is generated via SwarmUI

Style Model Merge Strength : 0.5

FLUX Guidance Scale is : 6

Used base model is my FLUX fine tuned model with 256 images via Kohya SS GUI as shown in tutorial ( https://youtu.be/FvpWy1x5etM ) - 70 epoch

Prompt : anime ohwx man walking in a jungle <segment:yolo-face_yolov9c.pt-1,0.7,0.5> ohwx man, anime
  • 2 replies
·
posted an update 5 days ago
view post
Post
562
NVIDIA Labs developed SANA model weights and Gradio demo app published —Check out this amazing new Text to Image model by NVIDIA

Official repo : https://github.com/NVlabs/Sana

1-Click Windows, RunPod, Massed Compute installers and free Kaggle notebook : https://www.patreon.com/posts/116474081

You can follow instructions on the repository to install and use locally. I tested on my Windows RTX 3060 and 3090 GPUs.

I have tested some speeds and VRAM usage too

Uses 9.5 GB VRAM but someone reported works good on 8 GB GPUs too

Default settings per image speeds as below

Free Kaggle Account Notebook on T4 GPU : 15 second
RTX 3060 (12 GB) : 9.5 second
RTX 3090 : 4 second
RTX 4090 : 2 second
More info : https://nvlabs.github.io/Sana/

Works great on RunPod and Massed Compute as well (cloud)

Sana : Efficient High-Resolution Image Synthesis
with Linear Diffusion Transformer

About Sana — Taken from official repo

We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence.