File size: 8,090 Bytes
6706230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
from functools import lru_cache
from typing import List
import cv2
import numpy as np
from diffusers.utils import load_image
from PIL import Image, ImageChops, ImageFilter
from ultralytics import YOLO
from .utils import *
def dilate_mask(mask, dilate_factor=6, blur_radius=2, erosion_factor=2):
if not mask:
return None
# Convert PIL image to NumPy array if necessary
if isinstance(mask, Image.Image):
mask = np.array(mask)
# Ensure mask is in uint8 format
mask = mask.astype(np.uint8)
# Apply dilation
kernel = np.ones((dilate_factor, dilate_factor), np.uint8)
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
# Apply erosion for refinement
kernel = np.ones((erosion_factor, erosion_factor), np.uint8)
eroded_mask = cv2.erode(dilated_mask, kernel, iterations=1)
# Apply Gaussian blur to smooth the edges
blurred_mask = cv2.GaussianBlur(
eroded_mask, (2 * blur_radius + 1, 2 * blur_radius + 1), 0
)
# Convert back to PIL image
smoothed_mask = Image.fromarray(blurred_mask).convert("L")
# Optionally, apply an additional blur for extra smoothness using PIL
smoothed_mask = smoothed_mask.filter(ImageFilter.GaussianBlur(radius=blur_radius))
return smoothed_mask
@lru_cache(maxsize=1)
def get_model(model_id):
model = YOLO(model=model_id)
return model
def combine_masks(masks: List[dict], labels: List[str], is_label=True) -> Image.Image:
"""
Combine masks with the specified labels into a single mask, optimized for speed and non-overlapping of excluded masks.
Parameters:
- masks (List[dict]): A list of dictionaries, each containing the mask under a 'mask' key and its label under a 'label' key.
- labels (List[str]): A list of labels to include in the combination.
Returns:
- Image.Image: The combined mask as a PIL Image object, or None if no masks are combined.
"""
labels_set = set(labels) # Convert labels list to a set for O(1) lookups
# Filter and convert mask images based on the specified labels
mask_images = [
mask["mask"].convert("L")
for mask in masks
if (mask["label"] in labels_set) == is_label
]
# Ensure there is at least one mask to combine
if not mask_images:
return None # Or raise an appropriate error, e.g., ValueError("No masks found for the specified labels.")
# Initialize the combined mask with the first mask
combined_mask = mask_images[0]
# Combine the remaining masks with the existing combined_mask using a bitwise OR operation to ensure non-overlap
for mask in mask_images[1:]:
combined_mask = ImageChops.lighter(combined_mask, mask)
return combined_mask
body_labels = ["hair", "face", "arm", "hand", "leg", "foot", "outfit"]
class BodyMask:
def __init__(
self,
image_path,
model_id,
labels=body_labels,
overlay="mask",
widen_box=0,
elongate_box=0,
resize_to=640,
dilate_factor=0,
is_label=False,
resize_to_nearest_eight=False,
verbose=True,
remove_overlap=True,
):
self.image_path = image_path
self.image = self.get_image(
resize_to=resize_to, resize_to_nearest_eight=resize_to_nearest_eight
)
self.labels = labels
self.is_label = is_label
self.model_id = model_id
self.model = get_model(self.model_id)
self.model_labels = self.model.names
self.verbose = verbose
self.results = self.get_results()
self.dilate_factor = dilate_factor
self.body_mask = self.get_body_mask()
self.box = get_bounding_box(self.body_mask)
self.body_box = self.get_body_box(
remove_overlap=remove_overlap, widen=widen_box, elongate=elongate_box
)
if overlay == "box":
self.overlay = overlay_mask(
self.image, self.body_box, opacity=0.9, color="red"
)
else:
self.overlay = overlay_mask(
self.image, self.body_mask, opacity=0.9, color="red"
)
def get_image(self, resize_to, resize_to_nearest_eight):
image = load_image(self.image_path)
if resize_to:
image = resize_preserve_aspect_ratio(image, resize_to)
if resize_to_nearest_eight:
image = resize_image_to_nearest_eight(image)
else:
image = image
return image
def get_body_mask(self):
body_mask = combine_masks(self.results, self.labels, self.is_label)
return dilate_mask(body_mask, self.dilate_factor)
def get_results(self):
imgsz = max(self.image.size)
results = self.model(
self.image, retina_masks=True, imgsz=imgsz, verbose=self.verbose
)[0]
self.masks, self.boxes, self.scores, self.phrases = unload(
results, self.model_labels
)
results = format_results(
self.masks,
self.boxes,
self.scores,
self.phrases,
self.model_labels,
person_masks_only=False,
)
# filter out lower score results
masks_to_filter = ["hair"]
results = filter_highest_score(results, ["hair", "face", "phone"])
return results
def display_results(self):
if len(self.masks) < 4:
cols = len(self.masks)
else:
cols = 4
display_image_with_masks(self.image, self.results, cols=cols)
def get_mask(self, mask_label):
assert mask_label in self.phrases, "Mask label not found in results"
return [f for f in self.results if f.get("label") == mask_label]
def combine_masks(self, mask_labels: List, no_labels=None, is_label=True):
"""
Combine the masks included in the labels list or all of the masks not in the list
"""
if not is_label:
mask_labels = [
phrase for phrase in self.phrases if phrase not in mask_labels
]
masks = [
row.get("mask") for row in self.results if row.get("label") in mask_labels
]
if len(masks) == 0:
return None
combined_mask = masks[0]
for mask in masks[1:]:
combined_mask = ImageChops.lighter(combined_mask, mask)
return combined_mask
def get_body_box(self, remove_overlap=True, widen=0, elongate=0):
body_box = get_bounding_box_mask(self.body_mask, widen=widen, elongate=elongate)
if remove_overlap:
body_box = self.remove_overlap(body_box)
return body_box
def remove_overlap(self, body_box):
"""
Remove mask regions that overlap with unwanted labels
"""
# convert mask to numpy array
box_array = np.array(body_box)
# combine the masks for those labels
mask = self.combine_masks(mask_labels=self.labels, is_label=True)
# convert mask to numpy array
mask_array = np.array(mask)
# where the mask array is white set the box array to black
box_array[mask_array == 255] = 0
# convert the box array to an image
mask_image = Image.fromarray(box_array)
return mask_image
if __name__ == "__main__":
url = "https://sjc1.vultrobjects.com/photo-storage/images/525d1f68-314c-455b-a8b6-f5dc3fa044e4.jpeg"
image_name = url.split("/")[-1]
labels = ["face", "hair", "phone", "hand"]
image = load_image(url)
image_size = image.size
# Get the original size of the image
original_size = image.size
# Create body mask
body_mask = BodyMask(
image,
overlay="box",
labels=labels,
widen_box=50,
elongate_box=10,
dilate_factor=0,
resize_to=640,
is_label=False,
remove_overlap=True,
verbose=False,
)
# Resize the image back to the original size
image = body_mask.image.resize(original_size)
body_mask.body_box.save(image_name)
|