mtl-xlmr-large-dsc-v2

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2257

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
0.4901 1.0 3087 0.5458
0.5308 2.0 6174 0.4982
0.39 3.0 9261 0.5104
0.1466 4.0 12348 0.6800
0.075 5.0 15435 0.6820
0.2699 6.0 18522 0.7831
0.1868 7.0 21609 0.9032
0.3338 8.0 24696 1.0255
0.0001 9.0 27783 1.1477
0.0001 10.0 30870 1.2257

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
559M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for MiuN2k3/mtl-xlmr-large-dsc-v2

Finetuned
(345)
this model