Edit model card

An example of using an ensemble of models is shown in the main.py file

Code for this project: https://github.com/Misha24-10/semeval_ner/tree/main

In low lavel classification on MultiCoNER II in test set:

Класс Precision Recall F1
Facility 0,7464 0,7321 0,7392
OtherLOC 0,7932 0,7068 0,7475
HumanSettlement 0,899 0,8948 0,8969
Station 0,8318 0,8125 0,8221
VisualWork 0,8528 0,8319 0,8422
MusicalWork 0,8025 0,7813 0,7917
WrittenWork 0,7766 0,728 0,7515
ArtWork 0,6374 0,5528 0,5921
Software 0,8476 0,8201 0,8336
MusicalGRP 0,8185 0,8207 0,8196
PublicCorp 0,7853 0,7572 0,771
PrivateCorp 0,7362 0,6896 0,7121
AerospaceManufacturer 0,6774 0,7541 0,7137
SportsGRP 0,8715 0,8938 0,8825
CarManufacturer 0,7617 0,7902 0,7757
ORG 0,7617 0,7371 0,7492
Scientist 0,5338 0,4886 0,5102
Artist 0,7971 0,8369 0,8165
Athlete 0,8094 0,802 0,8057
Politician 0,7115 0,6194 0,6622
Cleric 0,7349 0,6239 0,6748
SportsManager 0,678 0,6097 0,6421
OtherPER 0,5354 0,5915 0,562
Clothing 0,6326 0,6876 0,659
Vehicle 0,6699 0,6608 0,6653
Food 0,6814 0,6634 0,6723
Drink 0,6859 0,7203 0,7027
OtherPROD 0,7033 0,6638 0,683
Medication/Vaccine 0,7943 0,816 0,805
MedicalProcedure 0,7481 0,7375 0,7428
AnatomicalStructure 0,7765 0,7567 0,7664
Symptom 0,6086 0,7178 0,6587
Disease 0,7977 0,7719 0,7846
Macro Average Performance 0,7423 0,7294 0,7349

In high lavel classification on MultiCoNER II in test set:

Класс Precision Recall F1
LOC 0,8866 0,8732 0,8798
Medicine 0,794 0,7927 0,7934
GRP 0,8489 0,8419 0,8454
PROD 0,7449 0,7247 0,7347
PER 0,9346 0,939 0,9368
CW 0,8507 0,8162 0,8331
Macro Average Performance 0,8433 0,8313 0,8372

MultiCoNER II features complex NER in these languages:

  1. English
  2. Spanish
  3. Hindi
  4. Bangla
  5. Chinese
  6. Swedish
  7. Farsi
  8. French
  9. Italian
  10. Portugese
  11. Ukranian
  12. German

classification entities in low level between languages overall Macro F1-score:

Язык F1
PT 0,6872
IT 0,7441
UK 0,7199
BN 0,7320
FA 0,6404
ES 0,7230
FR 0,7289
DE 0,7164
EN 0,7069
HI 0,7544
ZH 0,5899
SV 0,7385
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .