An example of using an ensemble of models is shown in the main.py file
Code for this project: https://github.com/Misha24-10/semeval_ner/tree/main
In low lavel classification on MultiCoNER II in test set:
Класс | Precision | Recall | F1 |
---|---|---|---|
Facility | 0,7464 | 0,7321 | 0,7392 |
OtherLOC | 0,7932 | 0,7068 | 0,7475 |
HumanSettlement | 0,899 | 0,8948 | 0,8969 |
Station | 0,8318 | 0,8125 | 0,8221 |
VisualWork | 0,8528 | 0,8319 | 0,8422 |
MusicalWork | 0,8025 | 0,7813 | 0,7917 |
WrittenWork | 0,7766 | 0,728 | 0,7515 |
ArtWork | 0,6374 | 0,5528 | 0,5921 |
Software | 0,8476 | 0,8201 | 0,8336 |
MusicalGRP | 0,8185 | 0,8207 | 0,8196 |
PublicCorp | 0,7853 | 0,7572 | 0,771 |
PrivateCorp | 0,7362 | 0,6896 | 0,7121 |
AerospaceManufacturer | 0,6774 | 0,7541 | 0,7137 |
SportsGRP | 0,8715 | 0,8938 | 0,8825 |
CarManufacturer | 0,7617 | 0,7902 | 0,7757 |
ORG | 0,7617 | 0,7371 | 0,7492 |
Scientist | 0,5338 | 0,4886 | 0,5102 |
Artist | 0,7971 | 0,8369 | 0,8165 |
Athlete | 0,8094 | 0,802 | 0,8057 |
Politician | 0,7115 | 0,6194 | 0,6622 |
Cleric | 0,7349 | 0,6239 | 0,6748 |
SportsManager | 0,678 | 0,6097 | 0,6421 |
OtherPER | 0,5354 | 0,5915 | 0,562 |
Clothing | 0,6326 | 0,6876 | 0,659 |
Vehicle | 0,6699 | 0,6608 | 0,6653 |
Food | 0,6814 | 0,6634 | 0,6723 |
Drink | 0,6859 | 0,7203 | 0,7027 |
OtherPROD | 0,7033 | 0,6638 | 0,683 |
Medication/Vaccine | 0,7943 | 0,816 | 0,805 |
MedicalProcedure | 0,7481 | 0,7375 | 0,7428 |
AnatomicalStructure | 0,7765 | 0,7567 | 0,7664 |
Symptom | 0,6086 | 0,7178 | 0,6587 |
Disease | 0,7977 | 0,7719 | 0,7846 |
Macro Average Performance | 0,7423 | 0,7294 | 0,7349 |
In high lavel classification on MultiCoNER II in test set:
Класс | Precision | Recall | F1 |
---|---|---|---|
LOC | 0,8866 | 0,8732 | 0,8798 |
Medicine | 0,794 | 0,7927 | 0,7934 |
GRP | 0,8489 | 0,8419 | 0,8454 |
PROD | 0,7449 | 0,7247 | 0,7347 |
PER | 0,9346 | 0,939 | 0,9368 |
CW | 0,8507 | 0,8162 | 0,8331 |
Macro Average Performance | 0,8433 | 0,8313 | 0,8372 |
MultiCoNER II features complex NER in these languages:
- English
- Spanish
- Hindi
- Bangla
- Chinese
- Swedish
- Farsi
- French
- Italian
- Portugese
- Ukranian
- German
classification entities in low level between languages overall Macro F1-score:
Язык | F1 |
---|---|
PT | 0,6872 |
IT | 0,7441 |
UK | 0,7199 |
BN | 0,7320 |
FA | 0,6404 |
ES | 0,7230 |
FR | 0,7289 |
DE | 0,7164 |
EN | 0,7069 |
HI | 0,7544 |
ZH | 0,5899 |
SV | 0,7385 |