File size: 2,668 Bytes
78ba357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# MiniMax M2 模型 Transformers 部署指南
[英文版](./transformers_deploy_guide.md) | [中文版](./transformers_deploy_guide_cn.md)
## 本文档适用模型
本文档适用以下模型,只需在部署时修改模型名称即可。
- [MiniMaxAI/MiniMax-M2](https://huggingface.co/MiniMaxAI/MiniMax-M2)
以下以 MiniMax-M2 为例说明部署流程。
## 环境要求
- OS:Linux
- Python:3.9 - 3.12
- Transformers: 4.57.1
- GPU:
- compute capability 7.0 or higher
- 显存需求:权重需要 220 GB
## 使用 Python 部署
建议使用虚拟环境(如 **venv**、**conda**、**uv**)以避免依赖冲突。
建议在全新的 Python 环境中安装 Transformers:
```bash
uv pip install transformers torch accelerate --torch-backend=auto
```
运行如下 Python 命令运行模型,Transformers 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
MODEL_PATH = "MiniMaxAI/MiniMax-M2"
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
messages = [
{"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]},
{"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]}
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
generated_ids = model.generate(model_inputs, max_new_tokens=100, generation_config=model.generation_config)
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## 常见问题
### Huggingface 网络问题
如果遇到网络问题,可以设置代理后再进行拉取。
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
### MiniMax-M2 model is not currently supported
请确认开启 trust_remote_code=True。
## 获取支持
如果在部署 MiniMax 模型过程中遇到任何问题:
- 通过邮箱 [model@minimax.io](mailto:model@minimax.io) 等官方渠道联系我们的技术支持团队
- 在我们的 [GitHub](https://github.com/MiniMax-AI) 仓库提交 Issue
- 通过我们的 [官方企业微信交流群](https://github.com/MiniMax-AI/MiniMax-AI.github.io/blob/main/images/wechat-qrcode.jpeg) 反馈
我们会持续优化模型的部署体验,欢迎反馈!
|