File size: 2,051 Bytes
599bd45
9734ee0
 
 
 
 
 
e3fefad
 
 
 
 
9734ee0
00a9ebe
 
 
dd683bd
53fc189
 
e3fefad
00a9ebe
7aa637f
9feb919
72f647b
 
dd683bd
ae31c5c
 
dd683bd
ae31c5c
dd683bd
ae31c5c
dd683bd
ae31c5c
 
72f647b
 
9feb919
e3fefad
9feb919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- tr
- en
- es
license: apache-2.0
library_name: transformers
tags:
- Generative AI
- text-generation-inference
- text-generation
- peft
- unsloth
- medical
- biology
- code
- space
---

# Model Trained By Meforgers
*This model, named 'Aixr,' is designed for science and artificial intelligence development. You can use it as the foundation for many of your scientific projects and interesting ideas. In short, Aixr is an artificial intelligence model that is based on futurism and innovation.*

- # *Firstly*

  
  -If you intend to use unsloth with Pytorch 1.3.0: Utilize the "ampere" path for newer RTX 30xx GPUs or higher.
  ```python
      pip install "unsloth[cu118-torch230] @ git+https://github.com/unslothai/unsloth.git"
  
      pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git"
  
      pip install "unsloth[cu118-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
  
      pip install "unsloth[cu121-ampere-torch230] @ git+https://github.com/unslothai/unsloth.git"
     ```
  -Also you can use another system
  
- # *Usage*

  ```python
  from unsloth import FastLanguageModel
  import torch
  
  # Variable side
  max_seq_length = 512 
  dtype = torch.float16 
  load_in_4bit = True
  
  # Alpaca prompt
  alpaca_prompt = """### Instruction:
  {0}
  
  ### Input:
  {1}
  
  ### Response:
  {2}
  """
  
  model, tokenizer = FastLanguageModel.from_pretrained(
      model_name="Meforgers/Aixr",
      max_seq_length=max_seq_length,
      dtype=dtype,
      load_in_4bit=load_in_4bit,
  )
  
  FastLanguageModel.for_inference(model)
  
  inputs = tokenizer(
      [
          alpaca_prompt.format(
              "Can u text me basic python code?",  # instruction side (You need to change that side)
              "",  # input
              "",  # output - leave this blank for generation!
          )
      ],
      return_tensors="pt"
  ).to("cuda")
  
  outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
  print(tokenizer.batch_decode(outputs))
  
  ```