File size: 57,240 Bytes
ac0b14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
import logging
import math
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from transformers import T5Config
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
)
from transformers.utils import ModelOutput
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map

from .configuration_custom_t5 import (
    POSITION_ENCODING_REL_T5_BIAS,
    POSITION_ENCODING_REL_TRANSFORMER_XL,
    POSITION_ENCODING_ROTARY,
    POSITION_ENCODING_ROTARY_NEW,
    POSITION_ENCODING_ABS_LEARNED,
    POSITION_ENCODING_ABS_SINUSOID,
    POSITION_ENCODING_ALiBi,
    POSITION_ENCODING_ALiBi_LEARNED,
    POSITION_ENCODING_NONE,
    POSITION_ENCODING_NONE_WINDOW,
    CustomT5Config,
)
from .modeling_t5 import (
    T5Stack,
    T5PreTrainedModel,
    T5Block,
    T5LayerNorm,
    T5LayerFF,
    T5LayerSelfAttention,
    T5Attention,
    T5LayerCrossAttention,
)

logger = logging.getLogger(__name__)


@dataclass
class CausalLMOutputWithPastAndLoss(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    non_reduced_loss: Optional[torch.FloatTensor] = None


def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq)
        .to(x.device)
        .float()
    )
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    """
    Example: [a, b, c, d] -> [-b, a, -d, c]
    """
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
    x = torch.stack((-x2, x1), axis=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


def apply_rotary_pos_emb(x, sincos, offset=0):
    sin, cos = map(
        lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(
            2, 3
        ),
        sincos,
    )
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


def apply_rotary_pos_emb_new(x, sincos, offset=0):
    sin, cos = map(
        lambda t: t[:, :, None, :].repeat_interleave(2, 3),
        sincos,
    )
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super().__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer("inv_freq", inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[None, :, :].expand(bsz, -1, -1)
        else:
            return pos_emb[None, :, :]


class FixedAbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        t = torch.arange(16384).type_as(inv_freq)
        sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq)
        emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
        self.embed = nn.Embedding.from_pretrained(emb, freeze=True)

    def forward(self, position_ids: torch.Tensor):
        return self.embed(position_ids.long())


class FixedRotaryPositionalEmbedding(nn.Module):
    def __init__(
        self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384
    ):
        super().__init__()
        # This is an inverse frequency tensor
        # Each dimension has a higher denominator than the previous one
        # So, the frequency will be lower for higher dimensions
        inv_freq = 1.0 / (
            rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim)
        )  # [rotary_dim/2]

        # Now, we create frequencies for each position
        t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, inv_freq)  # [max_position, rotary_dim/2]

        sins = torch.sin(freqs)
        coss = torch.cos(freqs)

        emb = torch.cat([sins, coss], dim=-1)  # [max_position, rotary_dim]
        self.embed = nn.Embedding.from_pretrained(emb, freeze=True)

    def forward(self, position_ids: torch.Tensor):
        return self.embed(position_ids.long())


class CustomT5Attention(T5Attention):
    def __init__(self, config: T5Config, has_relative_attention_bias=False):
        super(T5Attention, self).__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias

        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.d_head = config.d_kv
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        self.position_encoding_type = getattr(
            config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
        )

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(
                self.relative_attention_num_buckets, self.n_heads
            )

        if self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
            nn.init.normal_(
                self.r_r_bias, mean=0.0, std=config.initializer_factor * 0.2
            )
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
            nn.init.normal_(
                self.r_w_bias, mean=0.0, std=config.initializer_factor * 0.2
            )
            self.r = nn.Linear(self.d_model, self.n_heads * self.d_head, bias=False)
            self.r.weight.data.normal_(
                mean=0.0, std=config.initializer_factor * (self.d_model**-0.5)
            )
            self.pos_emb = PositionalEmbedding(self.d_model)
            self.clamp_length = 1000

        if self.position_encoding_type == POSITION_ENCODING_ROTARY:
            self.rotary_dim = None
            if getattr(config, "rotary_dim", None) is not None:
                self.rotary_dim = config.rotary_dim
            self.rotary_dim = int(0.25 * self.d_head)

        if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
            # We hardcode the rotary dim to 25 percent of the head dim
            self.rotary_dim = self.d_head // 4

        self.pruned_heads = set()
        self.gradient_checkpointing = False

    def _rel_shift(self, x):
        zero_pad_shape = x.size()[:2] + (x.size(2), 1)
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=3)
        x_padded_shape = x.size()[:2] + (x.size(3) + 1, x.size(2))
        x_padded = x_padded.view(*x_padded_shape)
        x = x_padded[:, :, 1:, :].view_as(x)
        return x

    def forward(
        self,
        hidden_states,
        mask=None,
        position_bias=None,
        key_value_states=None,
        past_key_value=None,
        layer_head_mask=None,
        query_length=None,
        use_cache=False,
        output_attentions=False,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]

        real_seq_length = seq_length

        if past_key_value is not None:
            assert (
                len(past_key_value) == 2
            ), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states"
            real_seq_length += (
                past_key_value[0].shape[2] if query_length is None else query_length
            )

        key_length = (
            real_seq_length if key_value_states is None else key_value_states.shape[1]
        )

        def shape(states):
            """projection"""
            return states.view(
                batch_size, -1, self.n_heads, self.key_value_proj_dim
            ).transpose(1, 2)

        def unshape(states):
            """reshape"""
            return (
                states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
            )

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
            """projects hidden states correctly to key/query states"""
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states))
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))

            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_heads, key_length, dim_per_head)
                    hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        # get query states
        query_states = shape(
            self.q(hidden_states)
        )  # (batch_size, n_heads, seq_length, dim_per_head)

        if self.position_encoding_type in [
            POSITION_ENCODING_ROTARY,
            POSITION_ENCODING_ROTARY_NEW,
        ]:
            key_states = shape(self.k(hidden_states))
        else:
            # get key/value states
            key_states = project(
                hidden_states,
                self.k,
                key_value_states,
                past_key_value[0] if past_key_value is not None else None,
            )

        value_states = project(
            hidden_states,
            self.v,
            key_value_states,
            past_key_value[1] if past_key_value is not None else None,
        )

        attention_output_dict = {}

        if self.position_encoding_type == POSITION_ENCODING_REL_T5_BIAS:
            scores = torch.matmul(query_states, key_states.transpose(3, 2))
            attention_output_dict["scores_before"] = scores
            if position_bias is None:
                if not self.has_relative_attention_bias:
                    position_bias = torch.zeros(
                        (1, self.n_heads, real_seq_length, key_length),
                        device=scores.device,
                        dtype=scores.dtype,
                    )
                    if self.gradient_checkpointing and self.training:
                        position_bias.requires_grad = True
                else:
                    position_bias = self.compute_bias(real_seq_length, key_length)

                # if key and values are already calculated
                # we want only the last query position bias
                if past_key_value is not None:
                    position_bias = position_bias[:, :, -hidden_states.size(1) :, :]

                if mask is not None:
                    position_bias = (
                        position_bias + mask
                    )  # (batch_size, n_heads, seq_length, key_length)

            scores += position_bias
        elif self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
            if position_bias is None:
                pos_seq = torch.arange(
                    real_seq_length - 1,
                    -1,
                    -1.0,
                    device=hidden_states.device,
                    dtype=hidden_states.dtype,
                )
                if self.clamp_length > 0:
                    pos_seq = pos_seq.clamp_(max=self.clamp_length)
                position_bias = self.pos_emb(pos_seq)
                position_bias = nn.functional.dropout(
                    position_bias, p=self.dropout, training=self.training
                )

            position_embeds = position_bias  # position embeds: [1, seq_len, d_model]

            r_head_k = self.r(position_embeds)  # [1, seq_len, n_head*d_head]
            r_head_k = r_head_k.view(
                position_embeds.shape[1], self.n_heads, self.d_head
            )  # [seq_len, n_head, d_head]

            rw_head_q = query_states + self.r_w_bias[None, :, None, :]
            AC = torch.einsum("bnqd,bnkd->bnqk", (rw_head_q, key_states))

            rr_head_q = query_states + self.r_r_bias[None, :, None, :]
            BD = torch.einsum("bnid,jnd->bnij", (rr_head_q, r_head_k))
            BD = self._rel_shift(BD)

            scores = AC + BD

            if mask is not None:
                scores += mask
        elif self.position_encoding_type == POSITION_ENCODING_ROTARY:
            r_seq_len = hidden_states.shape[1]
            r_offset = 0

            if past_key_value is not None:
                r_offset = past_key_value[0].shape[2]
                r_seq_len += r_offset

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            if self.rotary_dim is not None:
                k_rot = key_states[:, :, :, : self.rotary_dim]
                k_pass = key_states[:, :, :, self.rotary_dim :]

                q_rot = query_states[:, :, :, : self.rotary_dim]
                q_pass = query_states[:, :, :, self.rotary_dim :]

                sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len)
                k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset)
                q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset)

                if output_attentions:
                    scores_pass = torch.matmul(
                        q_pass.permute(0, 2, 1, 3),
                        k_pass.permute(0, 2, 1, 3).transpose(3, 2),
                    )
                    attention_output_dict["scores_pass"] = scores_pass

                    scores_rot = torch.matmul(
                        q_rot.permute(0, 2, 1, 3),
                        k_rot.permute(0, 2, 1, 3).transpose(3, 2),
                    )
                    attention_output_dict["scores_rot"] = scores_rot

                key_states = torch.cat([k_rot, k_pass], dim=-1)
                query_states = torch.cat([q_rot, q_pass], dim=-1)
            else:
                sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len)
                key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset)
                query_states = apply_rotary_pos_emb(
                    query_states, sincos, offset=r_offset
                )

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            if past_key_value is not None:
                key_states = torch.cat([past_key_value[0], key_states], dim=2)

            scores = torch.matmul(
                query_states, key_states.transpose(3, 2)
            )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
            if mask is not None:
                scores += mask  # (batch_size, n_heads, seq_length, key_length)

        elif self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
            r_seq_len = hidden_states.shape[1]
            r_offset = 0

            if past_key_value is not None:
                r_offset = past_key_value[0].shape[2]
                r_seq_len += r_offset

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            if self.rotary_dim is not None:
                k_rot = key_states[:, :, :, : self.rotary_dim]
                k_pass = key_states[:, :, :, self.rotary_dim :]

                q_rot = query_states[:, :, :, : self.rotary_dim]
                q_pass = query_states[:, :, :, self.rotary_dim :]

                sincos = position_bias
                # sincos is just vector created by torch.cat([sin, cos], dim=-1)
                # so we can just split it in half
                sin = sincos[:, :, : self.rotary_dim // 2]
                cos = sincos[:, :, self.rotary_dim // 2 :]

                # We don't need to pass offset here, because we already used
                # position_ids to retrieve correct sin and cos vectors
                k_rot = apply_rotary_pos_emb_new(k_rot, (sin, cos))
                q_rot = apply_rotary_pos_emb_new(q_rot, (sin, cos))

                key_states = torch.cat([k_rot, k_pass], dim=-1)
                query_states = torch.cat([q_rot, q_pass], dim=-1)
            else:
                raise ValueError("rotary_dim is None")

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            if past_key_value is not None:
                key_states = torch.cat([past_key_value[0], key_states], dim=2)

            scores = torch.matmul(
                query_states, key_states.transpose(3, 2)
            )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
            if mask is not None:
                scores += mask  # (batch_size, n_heads, seq_length, key_length)
        elif self.position_encoding_type == POSITION_ENCODING_ALiBi:
            scores = torch.matmul(query_states, key_states.transpose(3, 2))
            attention_output_dict["scores_before"] = scores

            alibi = position_bias
            alibi = alibi.view(batch_size, self.n_heads, 1, key_length)

            # if key and values are already calculated
            # we want only the last query position bias
            if past_key_value is not None:
                alibi = alibi[:, :, -hidden_states.size(1) :, :]

            if mask is not None:
                alibi = alibi + mask  # (batch_size, n_heads, seq_length, key_length)

            scores += alibi
        else:
            assert (
                self.position_encoding_type == POSITION_ENCODING_NONE
            ), f"Unknown position encoding type: {self.position_encoding_type}"
            scores = torch.matmul(
                query_states, key_states.transpose(3, 2)
            )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
            if mask is not None:
                scores += mask  # (batch_size, n_heads, seq_length, key_length)

        attention_output_dict["scores"] = scores

        attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
            scores
        )  # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attention_output_dict["probs"] = attn_weights

        attn_output = unshape(
            torch.matmul(attn_weights, value_states)
        )  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        present_key_value_state = (
            (key_states, value_states) if (self.is_decoder and use_cache) else None
        )
        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)

        if output_attentions:
            outputs = outputs + (attention_output_dict,)
        return outputs


class CustomT5LayerSelfAttention(T5LayerSelfAttention):
    def __init__(self, config, has_relative_attention_bias=False):
        super(T5LayerSelfAttention, self).__init__()
        self.SelfAttention = CustomT5Attention(
            config, has_relative_attention_bias=has_relative_attention_bias
        )
        self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)


class CustomT5Block(T5Block):
    def __init__(self, config, has_relative_attention_bias=False):
        super(T5Block, self).__init__()
        self.is_decoder = config.is_decoder
        assert self.is_decoder
        self.layer = nn.ModuleList()
        self.layer.append(
            CustomT5LayerSelfAttention(
                config, has_relative_attention_bias=has_relative_attention_bias
            )
        )
        if self.is_decoder:
            self.layer.append(T5LayerCrossAttention(config))

        self.layer.append(T5LayerFF(config))


def _make_causal_mask(
    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    Make causal mask used for self-attention.
    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty(
        (target_length, target_length + past_key_values_length),
        dtype=torch.bool,
        device=device,
    )
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, None, :, :].expand(
        batch_size, 1, target_length, target_length + past_key_values_length
    )
    return expanded_mask


def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, tgt_length, src_length)


def build_alibi_tensor(
    attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype
) -> torch.Tensor:
    """
    Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
    relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
    `softmax(l+a) = softmax(l)`. Based on
    https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
    TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
    Args:
    Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
        attention_mask (`torch.Tensor`):
            Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
        num_heads (`int`, *required*):
            number of heads
        dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
            dtype of the output tensor
    """
    if len(attention_mask.shape) == 2:
        batch_size, seq_length = attention_mask.shape
    elif len(attention_mask.shape) == 3:
        batch_size, _, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
        device=attention_mask.device,
        dtype=torch.float32,
    )
    powers = torch.arange(
        1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32
    )
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
            device=attention_mask.device,
            dtype=torch.float32,
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(
            1,
            1 + 2 * num_remaining_heads,
            2,
            device=attention_mask.device,
            dtype=torch.int32,
        )
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)

    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
    # => the query_length dimension will then be broadcasted correctly
    # This is more or less identical to T5's relative position bias:
    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
    arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
    alibi = slopes[..., None] * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)


class CustomT5Stack(T5Stack):
    def __init__(self, config, embed_tokens=None):
        super(T5Stack, self).__init__(config)

        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder
        self.position_encoding_type = getattr(
            config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
        )

        logger.info(f"position_encoding_type: {self.position_encoding_type}")

        self.block = nn.ModuleList(
            [
                CustomT5Block(config, has_relative_attention_bias=bool(i == 0))
                for i in range(config.num_layers)
            ]
        )
        self.final_layer_norm = T5LayerNorm(
            config.d_model, eps=config.layer_norm_epsilon
        )
        self.dropout = nn.Dropout(config.dropout_rate)

        if self.position_encoding_type == POSITION_ENCODING_ABS_LEARNED:
            self.wpe = nn.Embedding(2048, config.d_model)
            parent_dir = Path(os.path.dirname(os.path.abspath(__file__)))
            learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy"
            if learned_embed_file.exists():
                logger.info(
                    "Loading position embedding from {}".format(learned_embed_file)
                )
                import numpy as np

                weight = np.load(str(learned_embed_file))
                self.wpe.weight.data.copy_(torch.from_numpy(weight))
                self.wpe.weight.requires_grad = False
            else:
                self.wpe.weight.data.normal_(
                    mean=0.0, std=config.initializer_factor * 1.0
                )

        if self.position_encoding_type == POSITION_ENCODING_ABS_SINUSOID:
            self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)

        if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
            # Rotary dim is X percentage of d_head
            # Right now, we just hardcode X here following:
            # https://github.com/huggingface/transformers/blob/v4.26.0/src/transformers/models/gpt_neox/configuration_gpt_neox.py
            rotary_dim = int(config.d_kv * 0.25)
            self.fixed_rotary_embedding = FixedRotaryPositionalEmbedding(
                rotary_dim, max_position=4096
            )

        if self.position_encoding_type in [
            POSITION_ENCODING_ALiBi,
            POSITION_ENCODING_ALiBi_LEARNED,
        ]:
            maxpos = 2048
            attn_heads = config.num_heads
            if self.position_encoding_type == POSITION_ENCODING_ALiBi_LEARNED:
                self.learned_logslopes = nn.Parameter(
                    torch.log(torch.Tensor(self.get_slopes(attn_heads)))
                )
            else:
                slopes = torch.Tensor(self.get_slopes(attn_heads))
                alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
                    maxpos
                ).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
                alibi = alibi.view(attn_heads, 1, maxpos)
                self.register_buffer("alibi", alibi)

        # Initialize weights and apply final processing
        self.post_init()
        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False

        self.window_size = 80  # only used for none_windowed

    def _alibi_prepare_attn_mask(
        self,
        attention_mask: torch.Tensor,
        input_shape: Tuple[int, int],
        past_key_values_length: int,
    ) -> torch.BoolTensor:
        # create causal mask
        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                device=device,
                past_key_values_length=past_key_values_length,
            )

        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
        combined_attention_mask = (
            expanded_attn_mask
            if combined_attention_mask is None
            else expanded_attn_mask | combined_attention_mask
        )

        return combined_attention_mask

    def get_slopes(self, n):
        def get_slopes_power_of_2(n):
            start = 2 ** (-(2 ** -(math.log2(n) - 3)))
            ratio = start
            return [start * ratio**i for i in range(n)]

        if math.log2(n).is_integer():
            return get_slopes_power_of_2(
                n
            )  # In the paper, we only train models that have 2^a heads for some a. This function has
        else:  # some good properties that only occur when the input is a power of 2. To maintain that even
            closest_power_of_2 = 2 ** math.floor(
                math.log2(n)
            )  # when the number of heads is not a power of 2, we use this workaround.
            return (
                get_slopes_power_of_2(closest_power_of_2)
                + self.get_slopes(2 * closest_power_of_2)[0::2][
                    : n - closest_power_of_2
                ]
            )

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        position_ids=None,
        return_dict=None,
    ):
        # Model parallel
        if self.model_parallel:
            torch.cuda.set_device(self.first_device)
            self.embed_tokens = self.embed_tokens.to(self.first_device)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if input_ids is not None and inputs_embeds is not None:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
            )

        if inputs_embeds is None:
            assert (
                self.embed_tokens is not None
            ), "You have to initialize the model with valid token embeddings"
            inputs_embeds = self.embed_tokens(input_ids)

        if self.position_encoding_type in [
            POSITION_ENCODING_ABS_LEARNED,
            POSITION_ENCODING_ABS_SINUSOID,
        ]:
            if position_ids is not None:
                position_ids = position_ids.view(-1, input_shape[-1])

            if past_key_values is None:
                past_length = 0
            else:
                past_length = past_key_values[0][0].size(-2)

            device = input_ids.device if input_ids is not None else inputs_embeds.device
            if position_ids is None:
                position_ids = torch.arange(
                    past_length,
                    input_shape[-1] + past_length,
                    dtype=torch.long,
                    device=device,
                )
                position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

            position_embeds = self.wpe(position_ids)
            inputs_embeds += position_embeds

        batch_size, seq_length = input_shape

        # `position_bias` is a just tensor that is passed to all attention layers
        position_bias = None

        # required mask seq length can be calculated via length of past
        mask_seq_length = (
            past_key_values[0][0].shape[2] + seq_length
            if past_key_values is not None
            else seq_length
        )

        if use_cache is True:
            assert (
                self.is_decoder
            ), f"`use_cache` can only be set to `True` if {self} is used as a decoder"

        if attention_mask is None:
            attention_mask = torch.ones(batch_size, mask_seq_length).to(
                inputs_embeds.device
            )
        if (
            self.is_decoder
            and encoder_attention_mask is None
            and encoder_hidden_states is not None
        ):
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = torch.ones(
                batch_size,
                encoder_seq_length,
                device=inputs_embeds.device,
                dtype=torch.long,
            )

        if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
            if position_ids is not None:
                position_ids = position_ids.view(-1, input_shape[-1])

            if past_key_values is None:
                past_length = 0
            else:
                past_length = past_key_values[0][0].size(-2)

            device = input_ids.device if input_ids is not None else inputs_embeds.device
            if position_ids is None:
                position_ids = torch.arange(
                    past_length,
                    input_shape[-1] + past_length,
                    dtype=torch.long,
                    device=device,
                )
                position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

            sinusoidal_pos = self.fixed_rotary_embedding(position_ids)
            position_bias = sinusoidal_pos

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        if self.position_encoding_type == POSITION_ENCODING_NONE_WINDOW:
            indices = torch.arange(seq_length, device=inputs_embeds.device)
            causal_mask = indices[:, None] >= indices
            window_mask = (
                (indices.unsqueeze(0) - indices.unsqueeze(0).T)
                .abs()
                .less(self.window_size)
            )
            causal_mask = causal_mask & window_mask
            attention_mask = causal_mask.int()

            # Repeat the mask for each sample in the batch
            attention_mask = attention_mask[None, :, :].expand(
                batch_size, seq_length, seq_length
            )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(
            attention_mask, input_shape, inputs_embeds.device
        )

        if self.position_encoding_type == POSITION_ENCODING_ALiBi:
            num_heads = self.config.num_heads
            if len(attention_mask.shape) == 3:
                # We need to make a default attention mask
                alibi_attention_mask = torch.ones(batch_size, mask_seq_length).to(
                    inputs_embeds.device
                )
            else:
                alibi_attention_mask = attention_mask

            alibi = build_alibi_tensor(
                alibi_attention_mask, num_heads, dtype=inputs_embeds.dtype
            )
            position_bias = alibi
            del alibi_attention_mask

        if self.position_encoding_type in [POSITION_ENCODING_ALiBi_LEARNED]:
            if not hasattr(self, "alibi"):
                maxpos = 2048
                attn_heads = self.config.num_heads
                slopes = self.learned_logslopes.exp()
                alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
                    maxpos, device=slopes.device
                ).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
                alibi = alibi.view(attn_heads, 1, maxpos)
            else:
                alibi = self.alibi

            alibi = alibi.unsqueeze(0).repeat(batch_size, 1, 1, 1)
            alibi = alibi[:, :, :, : attention_mask.shape[-1]]
            alibi = alibi.repeat(1, 1, extended_attention_mask.shape[2], 1)
            extended_attention_mask = torch.where(
                extended_attention_mask == 0,
                alibi,
                extended_attention_mask.repeat(1, self.config.num_heads, 1, 1),
            )

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            (
                encoder_batch_size,
                encoder_sequence_length,
                _,
            ) = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(
                    encoder_hidden_shape, device=inputs_embeds.device
                )
            encoder_extended_attention_mask = self.invert_attention_mask(
                encoder_attention_mask
            )
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(
            cross_attn_head_mask, self.config.num_layers
        )
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
        # position_bias = None
        encoder_decoder_position_bias = None

        hidden_states = self.dropout(inputs_embeds)

        for i, (layer_module, past_key_value) in enumerate(
            zip(self.block, past_key_values)
        ):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if position_bias is not None:
                    position_bias = position_bias.to(hidden_states.device)
                if encoder_hidden_states is not None:
                    encoder_hidden_states = encoder_hidden_states.to(
                        hidden_states.device
                    )
                if encoder_extended_attention_mask is not None:
                    encoder_extended_attention_mask = (
                        encoder_extended_attention_mask.to(hidden_states.device)
                    )
                if encoder_decoder_position_bias is not None:
                    encoder_decoder_position_bias = encoder_decoder_position_bias.to(
                        hidden_states.device
                    )
                if layer_head_mask is not None:
                    layer_head_mask = layer_head_mask.to(hidden_states.device)
                if cross_attn_layer_head_mask is not None:
                    cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
                        hidden_states.device
                    )
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                if use_cache:
                    logger.warn(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return tuple(module(*inputs, use_cache, output_attentions))

                    return custom_forward

                layer_outputs = checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    extended_attention_mask,
                    position_bias,
                    encoder_hidden_states,
                    encoder_extended_attention_mask,
                    encoder_decoder_position_bias,
                    layer_head_mask,
                    cross_attn_layer_head_mask,
                    None,  # past_key_value is always None with gradient checkpointing
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    position_bias=position_bias,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_extended_attention_mask,
                    encoder_decoder_position_bias=encoder_decoder_position_bias,
                    layer_head_mask=layer_head_mask,
                    cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            # layer_outputs is a tuple with:
            # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

            hidden_states, present_key_value_state = layer_outputs[:2]

            # We share the position biases between the layers - the first layer store them
            # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
            # (cross-attention position bias), (cross-attention weights)
            position_bias = layer_outputs[2]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[
                    4 if output_attentions else 3
                ]
            # append next layer key value states
            if use_cache:
                present_key_value_states = present_key_value_states + (
                    present_key_value_state,
                )

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[3],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (None,)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


class CustomDecoderOnlyT5(T5PreTrainedModel):
    config_class = CustomT5Config
    _keys_to_ignore_on_load_missing = [
        r"decoder\.embed_tokens\.weight",
        r"encoder",
        r"lm_head\.weight",
    ]
    _keys_to_ignore_on_load_unexpected = [
        r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
    ]

    def __init__(
        self,
        config=None,
        output_non_reduced_loss: bool = False,
        **kwargs,
    ):
        assert config is not None
        config.is_decoder = True
        config.is_encoder_decoder = False

        assert (
            config.position_encoding_type is not None
        ), "Position encoding type must be set"

        self.output_non_reduced_loss = output_non_reduced_loss
        self.main_input_name = "input_ids"

        super().__init__(config)

        self.model_dim = config.d_model

        self.shared = nn.Embedding(config.vocab_size, config.d_model)
        self.decoder = CustomT5Stack(config, self.shared)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        #
        cross_attention_params = [
            p
            for n, p in self.decoder.named_parameters()
            if n.startswith("block.") and ".layer.1." in n
        ]
        for param in cross_attention_params:
            param.requires_grad = False

        # self.handle_tokenizer(tokenizer)

    def get_decoder(self):
        return self.decoder

    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.encoder.block))
        self.encoder.parallelize(self.device_map)
        self.decoder.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.decoder.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.encoder.deparallelize()
        self.decoder.deparallelize()
        self.encoder = self.encoder.to("cpu")
        self.decoder = self.decoder.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        self.device_map = None
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.decoder.set_input_embeddings(new_embeddings)

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_output_embeddings(self):
        return self.lm_head

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
            "position_ids": position_ids,
        }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)

        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            if input_ids is not None:
                input_ids = input_ids.to(self.decoder.first_device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(self.decoder.first_device)

        transformer_outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            position_ids=position_ids,
            encoder_hidden_states=None,
            encoder_attention_mask=None,
            head_mask=head_mask,
            cross_attn_head_mask=None,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
            hidden_states = hidden_states * (self.model_dim**-0.5)

        lm_logits = self.lm_head(hidden_states)

        loss = None
        non_reduced_loss = None
        if labels is not None:
            # Compute loss in fp32 to match with mesh-tf version
            # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
            )

            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)

            if self.output_non_reduced_loss:
                loss_fct = CrossEntropyLoss(reduction="none")
                non_reduced_loss = loss_fct(
                    shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
                )

                # Reshape to [batch_size, seq_length - 1]
                non_reduced_loss = non_reduced_loss.view(
                    shift_labels.shape[0], shift_labels.shape[1]
                )[:, -1].view(-1, 1)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPastAndLoss(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            non_reduced_loss=non_reduced_loss,
        )

    @staticmethod
    def _reorder_cache(
        past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past
            )
            for layer_past in past
        )