segformer-b0-drone-real

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5066
  • Mean Iou: 0.0277
  • Mean Accuracy: 0.0561
  • Overall Accuracy: 0.3272
  • Per Category Iou: [nan, 0.3359579661339679, 0.0, 0.20517716653585355, 0.003702068923287315, 0.0, 0.0, 0.0, 0.006312134342948017, 0.058787282412541476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
  • Per Category Accuracy: [nan, 0.6093986043791881, 0.0, 0.4105641817321649, 0.003921086446309355, 0.0, 0.0, 0.0, 0.00706877745310955, 0.20348775859354865, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
2.8285 2.0 40 2.8542 0.0229 0.0536 0.2211 [nan, 0.23060686675928652, 3.3649639948852546e-05, 0.16273692278074856, 0.013325250843685254, 4.063223761732559e-05, 0.0, 0.0, 0.035811860573766785, 0.06198642655834834, 0.0, 0.0, 6.128953174797744e-05, 0.0, 0.0, 0.0, 5.1148278860416345e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.33385338422824606, 3.373169528473065e-05, 0.299629413956809, 0.014924989967585504, 4.09158863797309e-05, 0.0, 0.0, 0.06156816279101685, 0.46948081490592114, 0.0, 0.0, 7.101768340316739e-05, 0.0, 0.0, 0.0, 5.163155720776539e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.6567 4.0 80 2.6894 0.0262 0.0563 0.2866 [nan, 0.30624516924744655, 0.0, 0.18452743224435408, 0.004815305953306897, 0.0, 0.0, 0.0, 0.013916000286575587, 0.06596235864669749, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.49410241551371004, 0.0, 0.3789267923602906, 0.005102681931249924, 0.0, 0.0, 0.0, 0.016502745882809654, 0.3439400151190408, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.3286 6.0 120 2.5923 0.0267 0.0560 0.3328 [nan, 0.35729772739055154, 0.0, 0.1539404924138176, 0.0035934817901112264, 0.0, 0.0, 0.0, 0.005766957703680072, 0.06586525335295575, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.7280486819078453, 0.0, 0.23220288304265976, 0.003859608350752127, 0.0, 0.0, 0.0, 0.006166880921555261, 0.2614486947285752, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.3836 8.0 160 2.5890 0.0275 0.0575 0.3244 [nan, 0.349601471481378, 0.0, 0.17496917223449057, 0.0044570694472161245, 0.0, 0.0, 0.0, 0.007437757319012064, 0.0682080200846761, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.6614103864255038, 0.0, 0.29170107802854334, 0.004828395043379214, 0.0, 0.0, 0.0, 0.008074588150255963, 0.29956113264795986, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.2849 10.0 200 2.5525 0.0283 0.0569 0.3388 [nan, 0.3351423574874955, 0.0, 0.21293393590619594, 0.002350142484175345, 0.0, 0.0, 0.0, 0.005453996034797477, 0.06749403988523864, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.6106816065491506, 0.0, 0.4703984171366385, 0.002485471577527932, 0.0, 0.0, 0.0, 0.0058035081160884615, 0.16273986773434082, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.1539 12.0 240 2.5352 0.0289 0.0579 0.3431 [nan, 0.34790380657207765, 0.0, 0.21813897765519252, 0.0039179488370322925, 0.0, 0.0, 0.0, 0.004069615148127275, 0.06184727957512016, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.6213138456628569, 0.0, 0.4695635471053968, 0.004103493982578053, 0.0, 0.0, 0.0, 0.004355898828122703, 0.17384734612397268, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.1894 14.0 280 2.5923 0.0271 0.0567 0.3056 [nan, 0.3019300415296601, 0.0, 0.2108717486241356, 0.003421017543191299, 0.0, 0.0, 0.0, 0.012217783066499338, 0.06721066611554333, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.4912292097745947, 0.0, 0.49141307925385636, 0.0036400437237620272, 0.0, 0.0, 0.0, 0.01400423107111977, 0.2475275870599001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
1.9499 16.0 320 2.5169 0.0282 0.0569 0.3320 [nan, 0.33589786653498954, 0.0, 0.20789931305652776, 0.004207056605876958, 0.0, 0.0, 0.0, 0.0075080990386678535, 0.06424320004285503, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.613616488775929, 0.0, 0.4253884604222434, 0.0044872253922099824, 0.0, 0.0, 0.0, 0.008369991941750555, 0.19915876549744932, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.115 18.0 360 2.5153 0.0277 0.0562 0.3256 [nan, 0.3342799309383031, 0.0, 0.2066227292961174, 0.0034518271833141106, 0.0, 0.0, 0.0, 0.006799912048482982, 0.05915124911379064, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.5983876453859164, 0.0, 0.4204451510267332, 0.0036636891451301916, 0.0, 0.0, 0.0, 0.007619718595211191, 0.20718275529815128, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]
2.0119 20.0 400 2.5066 0.0277 0.0561 0.3272 [nan, 0.3359579661339679, 0.0, 0.20517716653585355, 0.003702068923287315, 0.0, 0.0, 0.0, 0.006312134342948017, 0.058787282412541476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan] [nan, 0.6093986043791881, 0.0, 0.4105641817321649, 0.003921086446309355, 0.0, 0.0, 0.0, 0.00706877745310955, 0.20348775859354865, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan]

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
42
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.