metadata
license: apache-2.0
library_name: transformers
tags:
- generated_from_trainer
- fine-tuned
- wikihow
- cosmopedia
- qwen
- moe
base_model: Qwen/Qwen1.5-MoE-A2.7B
model-index:
- name: models/Qwen1.5-MoE-A2.7B-Wikihow
results: []
datasets:
- HuggingFaceTB/cosmopedia
pipeline_tag: text-generation
models/Qwen1.5-MoE-A2.7B-Wikihow
This model is a fine-tuned version of Qwen/Qwen1.5-MoE-A2.7B on the HuggingFaceTB/cosmopedia dataset.
How to use it
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
See axolotl config
axolotl version: 0.4.0
base_model: Qwen/Qwen1.5-MoE-A2.7B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
# hub_model_id: MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow
# hf_use_auth_token: true
chat_template: chatml
datasets:
- path: HuggingFaceTB/cosmopedia
name: wikihow
type:
system_prompt: ""
field_instruction: prompt
field_output: text
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./models/Qwen1.5-MoE-A2.7B-Wikihow
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2