File size: 3,582 Bytes
f204548 50be237 f204548 50be237 f204548 191cf06 f204548 191cf06 f204548 191cf06 f204548 191cf06 f204548 191cf06 f204548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: apache-2.0
library_name: transformers
tags:
- generated_from_trainer
- fine-tuned
- wikihow
- cosmopedia
- qwen
- moe
base_model: Qwen/Qwen1.5-MoE-A2.7B
model-index:
- name: models/Qwen1.5-MoE-A2.7B-Wikihow
results: []
datasets:
- HuggingFaceTB/cosmopedia
pipeline_tag: text-generation
---
# models/Qwen1.5-MoE-A2.7B-Wikihow
This model is a fine-tuned version of [Qwen/Qwen1.5-MoE-A2.7B](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) on the [HuggingFaceTB/cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) dataset.
## How to use it
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
```
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow")
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: Qwen/Qwen1.5-MoE-A2.7B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
# hub_model_id: MaziyarPanahi/Qwen1.5-MoE-A2.7B-Wikihow
# hf_use_auth_token: true
chat_template: chatml
datasets:
- path: HuggingFaceTB/cosmopedia
name: wikihow
type:
system_prompt: ""
field_instruction: prompt
field_output: text
format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
no_input_format: "<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n"
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./models/Qwen1.5-MoE-A2.7B-Wikihow
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |