output_dir_nlpA
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0719
- Precision: 0.8688
- Recall: 0.8863
- F1: 0.8775
- Accuracy: 0.9747
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00023562901531222485
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.114 | 0.12 | 500 | 0.1153 | 0.8189 | 0.7594 | 0.7880 | 0.9607 |
0.0973 | 0.24 | 1000 | 0.1092 | 0.7920 | 0.8177 | 0.8047 | 0.9614 |
0.088 | 0.37 | 1500 | 0.0954 | 0.8387 | 0.8284 | 0.8335 | 0.9674 |
0.0744 | 0.49 | 2000 | 0.0883 | 0.8630 | 0.8248 | 0.8434 | 0.9694 |
0.06 | 0.61 | 2500 | 0.0853 | 0.8307 | 0.8833 | 0.8562 | 0.9703 |
0.0509 | 0.73 | 3000 | 0.0783 | 0.8657 | 0.8724 | 0.8690 | 0.9729 |
0.0422 | 0.85 | 3500 | 0.0753 | 0.8598 | 0.8875 | 0.8734 | 0.9738 |
0.0392 | 0.97 | 4000 | 0.0719 | 0.8688 | 0.8863 | 0.8775 | 0.9747 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MaryDatascientist/output_dir_nlpA
Base model
google-bert/bert-base-uncased