modelA_1_12_2023
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0875
- Precision: 0.8761
- Recall: 0.8916
- F1: 0.8838
- Accuracy: 0.9756
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.46211583196084e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0236 | 0.12 | 500 | 0.0804 | 0.8719 | 0.8856 | 0.8787 | 0.9747 |
0.0235 | 0.24 | 1000 | 0.0840 | 0.8461 | 0.9056 | 0.8749 | 0.9735 |
0.0193 | 0.37 | 1500 | 0.0869 | 0.8572 | 0.8990 | 0.8776 | 0.9745 |
0.0174 | 0.49 | 2000 | 0.0853 | 0.8689 | 0.8912 | 0.8799 | 0.9749 |
0.0136 | 0.61 | 2500 | 0.0899 | 0.8750 | 0.8923 | 0.8835 | 0.9754 |
0.0119 | 0.73 | 3000 | 0.0954 | 0.8685 | 0.8964 | 0.8822 | 0.9751 |
0.0126 | 0.85 | 3500 | 0.0919 | 0.8711 | 0.8932 | 0.8820 | 0.9754 |
0.0197 | 0.97 | 4000 | 0.0875 | 0.8761 | 0.8916 | 0.8838 | 0.9756 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MaryDatascientist/modelA_1_12_2023
Base model
google-bert/bert-base-uncased