my_qa_model / README.md
MartaCaldero's picture
Training in progress epoch 6
d042641
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: MartaCaldero/my_qa_model
    results: []

MartaCaldero/my_qa_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 7.1003
  • Train End Logits Loss: 3.5430
  • Train Start Logits Loss: 3.5573
  • Validation Loss: 8.6083
  • Validation End Logits Loss: 4.4272
  • Validation Start Logits Loss: 4.1811
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Loss Train Start Logits Loss Validation Loss Validation End Logits Loss Validation Start Logits Loss Epoch
7.1272 3.5735 3.5536 8.6083 4.4272 4.1811 0
7.3166 3.6143 3.7022 8.6083 4.4272 4.1811 1
7.2145 3.6057 3.6088 8.6083 4.4272 4.1811 2
7.1072 3.5426 3.5647 8.6083 4.4272 4.1811 3
6.9873 3.4903 3.4970 8.6083 4.4272 4.1811 4
7.1691 3.5943 3.5748 8.6083 4.4272 4.1811 5
7.1003 3.5430 3.5573 8.6083 4.4272 4.1811 6

Framework versions

  • Transformers 4.37.2
  • TensorFlow 2.15.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2