File size: 3,146 Bytes
c180b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d042641
 
 
c180b5b
 
 
d042641
c180b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240554
006775c
f66f3e7
803efea
0b81150
d042641
c180b5b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: MartaCaldero/my_qa_model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# MartaCaldero/my_qa_model

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 7.1003
- Train End Logits Loss: 3.5430
- Train Start Logits Loss: 3.5573
- Validation Loss: 8.6083
- Validation End Logits Loss: 4.4272
- Validation Start Logits Loss: 4.1811
- Epoch: 6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Loss | Train Start Logits Loss | Validation Loss | Validation End Logits Loss | Validation Start Logits Loss | Epoch |
|:----------:|:---------------------:|:-----------------------:|:---------------:|:--------------------------:|:----------------------------:|:-----:|
| 7.1272     | 3.5735                | 3.5536                  | 8.6083          | 4.4272                     | 4.1811                       | 0     |
| 7.3166     | 3.6143                | 3.7022                  | 8.6083          | 4.4272                     | 4.1811                       | 1     |
| 7.2145     | 3.6057                | 3.6088                  | 8.6083          | 4.4272                     | 4.1811                       | 2     |
| 7.1072     | 3.5426                | 3.5647                  | 8.6083          | 4.4272                     | 4.1811                       | 3     |
| 6.9873     | 3.4903                | 3.4970                  | 8.6083          | 4.4272                     | 4.1811                       | 4     |
| 7.1691     | 3.5943                | 3.5748                  | 8.6083          | 4.4272                     | 4.1811                       | 5     |
| 7.1003     | 3.5430                | 3.5573                  | 8.6083          | 4.4272                     | 4.1811                       | 6     |


### Framework versions

- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.2