File size: 1,220 Bytes
5c35d44
c9feb62
5777436
ed658dd
5c35d44
 
5777436
c9feb62
5777436
 
c9feb62
79e137c
5777436
c9feb62
 
79e137c
5777436
 
 
 
5c35d44
 
c9feb62
 
5c35d44
c9feb62
 
5777436
 
c9feb62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from typing import Dict
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os

class EndpointHandler:
    """Custom handler for NuExtract-2-8B (InternLM2 based)."""

    def __init__(self, path: str = "") -> None:
        # ↓↓↓ allow the repo’s custom configuration & modelling code
        self.tokenizer = AutoTokenizer.from_pretrained(
            path,
            trust_remote_code=True            # ← mandatory
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            path,
            trust_remote_code=True,            # ← mandatory
            torch_dtype=torch.float16,         # fits on a 16 GB GPU
            device_map="auto"                  # put tensors on the GPU
        ).eval()

    def __call__(self, data: Dict[str, str]) -> Dict[str, str]:
        prompt = data.get("inputs", "")
        if not prompt:
            return {"error": "No input provided."}

        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        output_ids = self.model.generate(**inputs, max_new_tokens=128)
        answer = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
        return {"generated_text": answer}