Chinkara 7B (Improved)

Chinkara is a Large Language Model trained on timdettmers/openassistant-guanaco dataset based on Meta's brand new LLaMa-2 with 7 billion parameters using QLoRa Technique, optimized for small consumer size GPUs. logo

Information

For more information about the model please visit prp-e/chinkara on Github.

Inference Guide

Open In Colab

NOTE: This part is for the time you want to load and infere the model on your local machine. You still need 8GB of VRAM on your GPU. The recommended GPU is at least a 2080!

Installing libraries

pip install  -U bitsandbytes
pip install  -U git+https://github.com/huggingface/transformers.git
pip install  -U git+https://github.com/huggingface/peft.git
pip install  -U git+https://github.com/huggingface/accelerate.git
pip install  -U datasets
pip install  -U einops

Loading the model

import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "Trelis/Llama-2-7b-chat-hf-sharded-bf16" 
adapters_name = 'MaralGPT/chinkara-7b-improved' 

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())},
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4'
    ),
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Setting the model up

from peft import LoraConfig, get_peft_model

model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Prompt and inference

prompt = "What is the answer to life, universe and everything?" 

prompt = f"###Human: {prompt} ###Assistant:"

inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=50, temperature=0.5, repetition_penalty=1.0)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.5.0.dev0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .